SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lagerquist E) ;pers:(Henning Petra 1974)"

Sökning: WFRF:(Lagerquist E) > Henning Petra 1974

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Windahl, Sara H, 1971, et al. (författare)
  • Estrogen Receptor-alpha is required for the Osteogenic Response to mechanical loading in a Ligand-Independent manner involving its activation function 1 but Not 2
  • 2013
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 28:2, s. 291-301
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen receptor-alpha (ER alpha) is crucial for the adaptive response of bone to loading but the role of endogenous estradiol (E2) for this response is unclear. To determine in vivo the ligand dependency and relative roles of different ERa domains for the osteogenic response to mechanical loading, gene-targeted mouse models with (1) a complete ERa inactivation (ER alpha(-/-)), (2) specific inactivation of activation function 1 (AF-1) in ER alpha (ER alpha AF-1(0)), or (3) specific inactivation of ER alpha AF-2 (ER alpha AF- 2(0)) were subjected to axial loading of tibia, in the presence or absence (ovariectomy [ovx]) of endogenous E2. Loading increased the cortical bone area in the tibia mainly as a result of an increased periosteal bone formation rate (BFR) and this osteogenic response was similar in gonadal intact and ovx mice, demonstrating that E2 (ligand) is not required for this response. Female ER alpha(-/-) mice displayed a severely reduced osteogenic response to loading with changes in cortical area (-78% +/- 15%, p < 0.01) and periosteal BFR (-81% +/- 9%, p < 0.01) being significantly lower than in wild-type (WT) mice. ER alpha AF-1(0) mice also displayed a reduced response to mechanical loading compared with WT mice (cortical area -40% +/- 11%, p < 0.05 and periosteal BFR -41% +/- 8%, p < 0.01), whereas the periosteal osteogenic response to loading was unaffected in ER alpha AF-2(0) mice. Mechanical loading of transgenic estrogen response element (ERE)-luciferase reporter mice did not increase luciferase expression in cortical bone, suggesting that the loading response does not involve classical genomic ERE-mediated pathways. In conclusion, ERa is required for the osteogenic response to mechanical loading in a ligand-independent manner involving AF-1 but not AF-2. (C) 2013 American Society for Bone and Mineral Research.
  •  
2.
  • Farman, Helen H., 1983, et al. (författare)
  • Membrane estrogen receptor alpha is essential for estrogen signaling in the male skeleton
  • 2018
  • Ingår i: Journal of Endocrinology. - : Bioscientifica. - 0022-0795 .- 1479-6805. ; 239:3, s. 303-312
  • Tidskriftsartikel (refereegranskat)abstract
    • The importance of estrogen receptor alpha (ER alpha) for the regulation of bone mass in males is well established. ERa mediates estrogenic effects both via nuclear and membraneinitiated ER alpha (mER alpha) signaling. The role of mERa signaling for the effects of estrogen on bone in male mice is unknown. To investigate the role of mERa signaling, we have used mice (Nuclear-Only-ER; NOER) with a point mutation (C451A), which results in inhibited trafficking of ER alpha to the plasma membrane. Gonadal-intact male NOER mice had a significantly decreased total body areal bone mineral density (aBMD) compared to WT littermates at 3, 6 and 9 months of age as measured by dual-energy X-ray absorptiometry (DEXA). High-resolution microcomputed tomography (mu CT) analysis of tibia in 3-month-old males demonstrated a decrease in cortical and trabecular thickness in NOER mice compared to WT littermates. As expected, estradiol (E2) treatment of orchidectomized (ORX) WT mice increased total body aBMD, trabecular BV/TV and cortical thickness in tibia compared to placebo treatment. E2 treatment increased these skeletal parameters also in ORX NOER mice. However, the estrogenic responses were significantly decreased in ORX NOER mice compared with ORX WT mice. In conclusion, mER alpha is essential for normal estrogen signaling in both trabecular and cortical bone in male mice. Increased knowledge of estrogen signaling mechanisms in the regulation of the male skeleton may aid in the development of new treatment options for male osteoporosis.
  •  
3.
  • Gustafsson, Karin L., 1987, et al. (författare)
  • A tissue-specific role of membrane-initiated ERα signaling for the effects of SERMs
  • 2022
  • Ingår i: Journal of Endocrinology. - 0022-0795. ; 253:2, s. 75-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Selective estrogen receptor modulators (SERMs) act as estrogen receptor (ER) agonists or antagonists in a tissue-specific manner. ERs exert effects via nuclear actions but can also utilize membrane-initiated signaling pathways. To dete rmine if membrane-initiated ERα (mERα) signaling affects SERM action in a tissue-specific manner, C451 A mice, lacking mERα signaling due to a mutation at palmitoylation site C451, were treated with Lasofoxifene (Las), Bazedoxifene (Bza), or estradi ol (E2), and various tissues were evaluated. Las and Bza treatment increased uterine weight to a similar extent in C451A and control mice, demonstrating mERα-independent uterine SERM effects, while the E2 effect on the uterus was predominantly mER α-dependent. Las and Bza treatment increased both trabecular and cortical bone mass in controls to a similar degree as E2, while both SERM and E2 treatment effects were abse nt in C451A mice. This demonstrates that SERM effects, similar to E2 effects, in th e skeleton are mERα- dependent. Both Las and E2 treatment decreased thymus weight in controls, while neither treatment affected the thymus in C451A mice, demonstrati ng mERα-dependent SERM and E2 effects in this tissue. Interestingly, both SERM and E2 treatments decreased the total body fat percent in C451A mice, demonstrating the ability of these treatments to affect fat tissue in the absence of functional mER α signaling. In conclusion, mERα signaling can modulate SERM responses in a tissue-specific manne r. This novel knowledge increases the understanding of the mechanisms behind SERM effects and may thereby facilitate the development of new improved SERMs.
  •  
4.
  • Gustafsson, Karin L., 1987, et al. (författare)
  • The role of membrane ER alpha signaling in bone and other major estrogen responsive tissues
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen receptor a (ER alpha) signaling leads to cellular responses in several tissues and in addition to nuclear ER alpha-mediated effects, membrane ER alpha (mER alpha) signaling may be of importance. To elucidate the significance, in vivo, of mER alpha signaling in multiple estrogen-responsive tissues, we have used female mice lacking the ability to localize ER alpha to the membrane due to a point mutation in the palmitoylation site (C451A), so called Nuclear-Only-ER (NOER) mice. Interestingly, the role of mER alpha signaling for the estrogen response was highly tissue-dependent, with trabecular bone in the axial skeleton being strongly dependent (>80% reduction in estrogen response in NOER mice), cortical and trabecular bone in long bones, as well as uterus and thymus being partly dependent (40-70% reduction in estrogen response in NOER mice) and effects on liver weight and total body fat mass being essentially independent of mER alpha (<35% reduction in estrogen response in NOER mice). In conclusion, mER alpha signaling is important for the estrogenic response in female mice in a tissue-dependent manner. Increased knowledge regarding membrane initiated ER alpha actions may provide means to develop new selective estrogen receptor modulators with improved profiles.
  •  
5.
  • Jiang, Yiwen, et al. (författare)
  • Membrane estrogen receptor alpha signaling modulates the sensitivity to estradiol treatment in a dose- and tissue- dependent manner
  • 2023
  • Ingår i: Scientific Reports. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Estradiol (E2) affects both reproductive and non-reproductive tissues, and the sensitivity to different doses of E2 varies between tissues. Membrane estrogen receptor alpha (mER alpha)-initiated signaling plays a tissue-specific role in mediating E2 effects, however, it is unclear if mER alpha signaling modulates E2 sensitivity. To determine this, we treated ovariectomized C451A females, lacking mER alpha signaling, and wildtype (WT) littermates with physiological (0.05 mu g/mouse/day (low); 0.6 mu g/mouse/day (medium)) or supraphysiological (6 mu g/mouse/day (high)) doses of E2 (17 beta-estradiol-3-benzoate) for three weeks. Low-dose treatment increased uterus weight in WT, but not C451A mice, while non-reproductive tissues (gonadal fat, thymus, trabecular and cortical bone) were unaffected in both genotypes. Medium-dose treatment increased uterus weight and bone mass and decreased thymus and gonadal fat weights in WT mice. Uterus weight was also increased in C451A mice, but the response was significantly attenuated (- 85%) compared to WT mice, and no effects were triggered in non-reproductive tissues. High-dose treatment effects in thymus and trabecular bone were significantly blunted (- 34% and - 64%, respectively) in C451A compared to WT mice, and responses in cortical bone and gonadal fat were similar between genotypes. Interestingly, the high dose effect in uterus was enhanced (+ 26%) in C451A compared to WT mice. In conclusion, loss of mER alpha signaling reduces the sensitivity to physiological E2 treatment in both non-reproductive tissues and uterus. Furthermore, the E2 effect after high-dose treatment in uterus is enhanced in the absence of mER alpha, suggesting a protective effect of mER alpha signaling in this tissue against supraphysiological E2 levels.
  •  
6.
  • Lagerquist, Marie K, et al. (författare)
  • Reduction of Mature B Cells and Immunoglobulins Results in Increased Trabecular Bone
  • 2022
  • Ingår i: Jbmr Plus. - : Wiley. - 2473-4039. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation has a significant effect on bone remodeling and can result in bone loss via increased stimulation of osteoclasts. Activated immunoglobulins, especially autoantibodies, can increase osteoclastogenesis and are associated with pathological bone loss. Whether immunoglobulins and mature B lymphocytes are important for general bone architecture has not been completely determined. Here we demonstrate, using a transgenic mouse model, that reduction of mature B cells and immunoglobulins leads to increased trabecular bone mass compared to wild-type (WT) littermate controls. This bone effect is associated with a decrease in the number of osteoclasts and reduced bone resorption, despite decreased expression of osteoprotegerin. We also demonstrate that the reduction of mature B cells and immunoglobulins do not prevent bone loss caused by estrogen deficiency or arthritis compared to WT littermate controls. In conclusion, the reduction of mature B cells and immunoglobulins results in disturbed regulation of trabecular bone turnover in healthy conditions but is dispensable for pathological bone loss. (c) 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
  •  
7.
  • Movérare-Skrtic, Sofia, et al. (författare)
  • The bone-sparing effects of estrogen and WNT16 are independent of each other
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:48, s. 14972-14977
  • Tidskriftsartikel (refereegranskat)abstract
    • Wingless-type MMTV integration site family (WNT)16 is a key regulator of bone mass with high expression in cortical bone, and Wnt16-/- mice have reduced cortical bone mass. As Wnt16 expression is enhanced by estradiol treatment, we hypothesized that the bone-sparing effect of estrogen in females isWNT16-dependent. This hypothesis was tested in mechanistic studies using two genetically modified mouse models with either constantly high osteoblastic Wnt16 expression or no Wnt16 expression. We developed a mouse model with osteoblast-specific Wnt16 overexpression (Obl-Wnt16). These mice had several-fold elevated Wnt16 expression in both trabecular and cortical bone compared with wild type (WT) mice. Obl- Wnt16 mice displayed increased total body bone mineral density (BMD), surprisingly caused mainly by a substantial increase in trabecular bone mass, resulting in improved bone strength of vertebrae L3. Ovariectomy (ovx) reduced the total body BMD and the trabecular bone mass to the same degree in Obl-Wnt16 mice and WT mice, suggesting that the bone-sparing effect of estrogen is WNT16-independent. However, these bone parameters were similar in ovx Obl- Wnt16 mice and sham operated WT mice. The role of WNT16 for the bone-sparing effect of estrogen was also evaluated in Wnt16-/- mice. Treatment with estradiol increased the trabecular and cortical bone mass to a similar extent in both Wnt16-/- and WT mice. In conclusion, the bone-sparing effects of estrogen and WNT16 are independent of each other. Furthermore, loss of endogenous WNT16 results specifically in cortical bone loss, whereas overexpression of WNT16 surprisingly increases mainly trabecular bone mass. WNT16- targeted therapies might be useful for treatment of postmenopausal trabecular bone loss.
  •  
8.
  • Ohlsson, Claes, 1965, et al. (författare)
  • Inducible Wnt16 inactivation: WNT16 regulates cortical bone thickness in adult mice.
  • 2018
  • Ingår i: The Journal of endocrinology. - 1479-6805. ; 237:2, s. 113-122
  • Tidskriftsartikel (refereegranskat)abstract
    • Substantial progress has been made in the therapeutic reduction of vertebral fracture risk in patients with osteoporosis, but non-vertebral fracture risk has been improved only marginally. Human genetic studies demonstrate that the WNT16 locus is a major determinant of cortical bone thickness and non-vertebral fracture risk and mouse models with life-long Wnt16 inactivation revealed that WNT16 is a key regulator of cortical thickness. These studies, however, could not exclude that the effect of Wnt16 inactivation on cortical thickness might be caused by early developmental and/or growth effects. To determine the effect of WNT16 specifically on adult cortical bone homeostasis, Wnt16 was conditionally ablated in young adult and old mice through tamoxifen-inducible Cre-mediated recombination using CAG-Cre-ER; Wnt16flox/flox (Cre-Wnt16flox/flox) mice. First, 10-week-old Cre-Wnt16flox/flox and Wnt16flox/flox littermate control mice were treated with tamoxifen. Four weeks later, Wnt16 mRNA levels in cortical bone were reduced and cortical thickness in femur was decreased in Cre-Wnt16flox/flox mice compared to Wnt16flox/flox mice. Then, inactivation of Wnt16 in 47-week-old mice (evaluated four weeks later) resulted in a reduction of Wnt16 mRNA levels, cortical thickness and cortical bone strength with no effect on trabecular bone volume fraction. Mechanistic studies demonstrated that the reduced cortical bone thickness was caused by a combination of increased bone resorption and reduced periosteal bone formation. In conclusion, WNT16 is a crucial regulator of cortical bone thickness in young adult and old mice. We propose that new treatment strategies targeting the adult regulation of WNT16 might be useful to reduce fracture risk at cortical bone sites.
  •  
9.
  • Ohlsson, Claes, 1965, et al. (författare)
  • Phosphorylation site S122 in estrogen receptor α has a tissue-dependent role in female mice
  • 2020
  • Ingår i: FASEB Journal. - 0892-6638 .- 1530-6860. ; 34, s. 15991-16002
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen treatment increases bone mass and reduces fat mass but is associated with adverse effects in postmenopausal women. Knowledge regarding tissue-specific estrogen signaling is important to aid the development of new tissue-specific treatments. We hypothesized that the posttranslational modification phosphorylation in estrogen receptor alpha (ERα) may modulate ERα activity in a tissue-dependent manner. Phosphorylation of site S122 in ERα has been shown in vitro to affect ERα activity, but the tissue-specific role in vivo is unknown. We herein developed and phenotyped a novel mouse model with a point mutation at the phosphorylation site 122 in ERα (S122A). Female S122A mice had increased fat mass and serum insulin levels but unchanged serum sex steroid levels, uterus weight, bone mass, thymus weight, and lymphocyte maturation compared to WT mice. In conclusion, phosphorylation site S122 in ERα has a tissue-dependent role with an impact specifically on fat mass in female mice. This study is the first to demonstrate in vivo that a phosphorylation site in a transactivation domain in a nuclear steroid receptor modulates the receptor activity in a tissue-dependent manner.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy