SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lagerquist E.) ;lar1:(ki)"

Sökning: WFRF:(Lagerquist E.) > Karolinska Institutet

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nilsson, Maria E., et al. (författare)
  • Measurement of a comprehensive sex steroid profile in rodent serum by high-sensitive gas chromatography-tandem mass spectrometry.
  • 2015
  • Ingår i: Endocrinology. - : The Endocrine Society. - 1945-7170 .- 0013-7227. ; 156:7, s. 2492-502
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate measurement of sex steroid concentrations in rodent serum is essential to evaluate mouse and rat models for sex steroid-related disorders. The aim of the present study was to develop a sensitive and specific gas chromatography-tandem mass spectrometry (GC-MS/MS) method to assess a comprehensive sex steroid profile in rodent serum. A major effort was invested in reaching an exceptionally high sensitivity for measuring serum estradiol concentrations. We established a GC-MS/MS assay with a lower limit of detection for estradiol, estrone, testosterone, dihydrotestosterone, progesterone, androstenedione and dehydroepiandrosterone of 0.3, 0.5, 4, 1.6, 8, 4 and 50 pg/ml, respectively, while the corresponding values for the lower limit of quantification were 0.5, 0.5, 8, 2.5, 74, 12 and 400 pg/ml, respectively. Calibration curves were linear, intra- and inter-assay CVs were low and accuracy was excellent for all analytes. The established assay was used to accurately measure a comprehensive sex steroid profile in female rats and mice according to estrus cycle phase. In addition, we characterized the impact of age, sex, gonadectomy, and estradiol treatment on serum concentrations of these sex hormones in mice. In conclusion, we have established a highly sensitive and specific GC-MS/MS method to assess a comprehensive sex steroid profile in rodent serum in a single run. This GC-MS/MS assay has, to the best of our knowledge, the best detectability reported for estradiol. Our method therefore represents an ideal tool to characterize sex steroid metabolism in a variety of sex steroid-related rodent models and in human samples with low estradiol levels.
  •  
2.
  •  
3.
  • Borjesson, AE, et al. (författare)
  • The role of estrogen receptor-α and its activation function-1 for growth plate closure in female mice
  • 2012
  • Ingår i: American journal of physiology. Endocrinology and metabolism. - : American Physiological Society. - 1522-1555 .- 0193-1849. ; 302:11, s. E1381-E1389
  • Tidskriftsartikel (refereegranskat)abstract
    • High estradiol levels in late puberty induce growth plate closure and thereby cessation of growth in humans. In mice, the growth plates do not fuse after sexual maturation, but old mice display reduced longitudinal bone growth and high-dose estradiol treatment induces growth plate closure. Estrogen receptor (ER)-α stimulates gene transcription via two activation functions (AFs), AF-1 and AF-2. To evaluate the role of ERα and its AF-1 for age-dependent reduction in longitudinal bone growth and growth plate closure, female mice with inactivation of ERα (ERα−/−) or ERαAF-1 (ERαAF-10) were evaluated. Old (16- to 19-mo-old) female ERα−/−mice showed continued substantial longitudinal bone growth, resulting in longer bones (tibia: +8.3%, P < 0.01) associated with increased growth plate height (+18%, P < 0.05) compared with wild-type (WT) mice. In contrast, the longitudinal bone growth ceased in old ERαAF-10mice (tibia: −4.9%, P < 0.01). Importantly, the proximal tibial growth plates were closed in all old ERαAF-10mice while they were open in all WT mice. Growth plate closure was associated with a significantly altered balance between chondrocyte proliferation and apoptosis in the growth plate. In conclusion, old female ERα−/−mice display a prolonged and enhanced longitudinal bone growth associated with increased growth plate height, resembling the growth phenotype of patients with inactivating mutations in ERα or aromatase. In contrast, ERαAF-1 deletion results in a hyperactive ERα, altering the chondrocyte proliferation/apoptosis balance, leading to growth plate closure. This suggests that growth plate closure is induced by functions of ERα that do not require AF-1 and that ERαAF-1 opposes growth plate closure.
  •  
4.
  • Colldén, Hannah, et al. (författare)
  • Dehydroepiandrosterone Supplementation Results in Varying Tissue-specific Levels of Dihydrotestosterone in Male Mice
  • 2022
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 163:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Dehydroepiandrosterone (DHEA), an adrenal androgen precursor, can be metabolized in target tissues into active sex steroids. It has been proposed that DHEA supplementation might result in restoration of physiological local sex steroid levels, but knowledge on the effect of DHEA treatment on local sex steroid levels in multiple tissues is lacking. To determine the effects of DHEA on tissue-specific levels of sex steroids, we treated orchiectomized (ORX) male mice with DHEA for 3 weeks and compared them with vehicle-treated ORX mice and gonadal intact mice. Intra-tissue levels of sex steroids were analyzed in reproductive organs (seminal vesicles, prostate, m. levator ani), major body compartments (white adipose tissue, skeletal muscle, and brain), adrenals, liver, and serum using a sensitive and validated gas chromatography-mass spectrometry method. DHEA treatment restored levels of both testosterone (T) and dihydrotestosterone (DHT) to approximately physiological levels in male reproductive organs. In contrast, this treatment did not increase DHT levels in skeletal muscle or brain. In the liver, DHEA treatment substantially increased levels of T (at least 4-fold) and DHT (+536%, P < 0.01) compared with vehicle-treated ORX mice. In conclusion, we provide a comprehensive map of the effect of DHEA treatment on intra-tissue sex steroid levels in ORX mice with a restoration of physiological levels of androgens in male reproductive organs while DHT levels were not restored in the skeletal muscle or brain. This, and the unexpected supraphysiological androgen levels in the liver, may be a cause for concern considering the uncontrolled use of DHEA.
  •  
5.
  • Iravani, M., et al. (författare)
  • Effects of the selective GPER1 agonist G1 on bone growth
  • 2019
  • Ingår i: Endocrine Connections. - 2049-3614. ; 8:9, s. 1302-1309
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogens may affect bone growth locally or systemically via the known estrogen receptors ESR1, ESR2 and G protein-coupled estrogen receptor 1 (GPER1). Mouse and human growth plate chondrocytes have been demonstrated to express GPER1 and ablation of this receptor increased bone length in mice. Therefore, GPER1 is an attractive target for therapeutic modulation of bone growth, which has never been explored. To investigate the effects of activated GPER1 on the growth plate, we locally exposed mouse metatarsal bones to different concentrations of the selective GPER1 agonist G1 for 14 days ex vivo. The results showed that none of the concentrations of G1 had any direct effect on metatarsal bone growth when compared to control. To evaluate if GPER1 stimulation may systemically modulate bone growth, ovariectomized C57BL/6 mice were treated with G1 or beta-estradiol (E2). Similarly, G1 did not influence tibia and femur growth in treated mice. As expected, E2 treatment suppressed bone growth in vivo. We conclude that ligand stimulation of GPER1 does not influence bone growth in mice.
  •  
6.
  • Movérare-Skrtic, Sofia, et al. (författare)
  • The bone-sparing effects of estrogen and WNT16 are independent of each other
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:48, s. 14972-14977
  • Tidskriftsartikel (refereegranskat)abstract
    • Wingless-type MMTV integration site family (WNT)16 is a key regulator of bone mass with high expression in cortical bone, and Wnt16-/- mice have reduced cortical bone mass. As Wnt16 expression is enhanced by estradiol treatment, we hypothesized that the bone-sparing effect of estrogen in females isWNT16-dependent. This hypothesis was tested in mechanistic studies using two genetically modified mouse models with either constantly high osteoblastic Wnt16 expression or no Wnt16 expression. We developed a mouse model with osteoblast-specific Wnt16 overexpression (Obl-Wnt16). These mice had several-fold elevated Wnt16 expression in both trabecular and cortical bone compared with wild type (WT) mice. Obl- Wnt16 mice displayed increased total body bone mineral density (BMD), surprisingly caused mainly by a substantial increase in trabecular bone mass, resulting in improved bone strength of vertebrae L3. Ovariectomy (ovx) reduced the total body BMD and the trabecular bone mass to the same degree in Obl-Wnt16 mice and WT mice, suggesting that the bone-sparing effect of estrogen is WNT16-independent. However, these bone parameters were similar in ovx Obl- Wnt16 mice and sham operated WT mice. The role of WNT16 for the bone-sparing effect of estrogen was also evaluated in Wnt16-/- mice. Treatment with estradiol increased the trabecular and cortical bone mass to a similar extent in both Wnt16-/- and WT mice. In conclusion, the bone-sparing effects of estrogen and WNT16 are independent of each other. Furthermore, loss of endogenous WNT16 results specifically in cortical bone loss, whereas overexpression of WNT16 surprisingly increases mainly trabecular bone mass. WNT16- targeted therapies might be useful for treatment of postmenopausal trabecular bone loss.
  •  
7.
  • Niklasson, Bo, et al. (författare)
  • Prenatal viral exposure followed by adult stress produces glucose intolerance in a mouse model
  • 2006
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 49:9, s. 2192-2199
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: It has been suggested that the uterine environment may influence metabolic disease occurring later in adult life, and that adult stress may promote disease outcome. Using a mouse model, we tested whether in utero exposure to Ljungan virus (LV) followed by adult exposure to stress produces diabetes. The influence of the timing of viral exposure over the course of pregnancy was also tested. Materials and methods: Pregnant CD-1 mice were exposed i.p. to LV on pregnancy days 4, 8, 12 or 17. Adult male mice from these pregnancies were stressed by being kept in shared cages. Stress only, LV exposure in utero only, and no-stress/no virus exposure groups were also followed. Outcome variables included bodyweight, epididymal fat weight, baseline glucose, glucose tolerance tests (60 and 120 min) and serum insulin. Results: We demonstrated that male mice developed a type 2-like diabetes, including obesity, as adults if infected during pregnancy with LV. Diabetes at the age of 11 weeks was more severe in mice whose mothers were infected earlier than in those whose mothers were infected later in pregnancy. Only animals infected in utero and kept under stress developed diabetes; infection or stress alone did not cause disease. Conclusions/interpretation: This work demonstrates that a type 2 diabetes-like disease can be virus-induced in a mouse model. Early in utero viral insults can set the stage for disease occurring during adult life, but the final manifestation of diabetes is dependent on the combination of early viral exposure and stress in adult life.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy