SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lagerstedt Jens O.) ;mspu:(article)"

Sökning: WFRF:(Lagerstedt Jens O.) > Tidskriftsartikel

  • Resultat 1-10 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Azhar, Salman, et al. (författare)
  • Novel ABCA1 peptide agonists with antidiabetic action
  • 2019
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 480, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Previously, apoE-derived ABCA1 agonist peptides have been shown to possess anti-atherosclerotic and possibly antidiabetic properties. Here we assessed the in vitro and in vivo actions of a second generation of ABCA1 peptide agonists, CS6253 and T6991-2, on glucose homeostasis. The results show that these two peptides improve glucose tolerance in a prediabetic diet-induced obesity mouse model by enhancing insulin secretion. It was further demonstrated that T6991-2 also improved glucose tolerance in leptin-deficient (ob/ob) mice. CS6253 increased insulin secretion both under basal conditions and in response to high glucose stimulation in pancreatic INS-1 β-cells rendered leptin receptor deficient with specific siRNA. Additional in vitro cell studies suggest that the CS6253 agonist attenuates hepatic gluconeogenesis and glucose transport. It also potentiates insulin-stimulated glucose uptake and utilization. These observed anti-diabetic actions suggest additional benefits of the CS6253 and T6991-2 ABCA1 peptide agonists for cardiovascular disease beyond their direct anti-atherosclerosis properties previously described.
  •  
2.
  • Bacos, Karl, et al. (författare)
  • Type 2 diabetes candidate genes, including PAX5, cause impaired insulin secretion in human pancreatic islets
  • 2023
  • Ingår i: The Journal of clinical investigation. - 0021-9738 .- 1558-8238. ; 133:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic β-cells. To identify candidates contributing to T2D pathophysiology, we studied human pancreatic islets from ~300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified islet expression changes may predispose to diabetes, as they associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human β-cells based on single-cell RNA-sequencing data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D-SNPs. Mouse knock-out strains demonstrated that T2D-associated candidates regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing β-cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we identified molecular alterations in human pancreatic islets contributing to β-cell dysfunction in T2D pathophysiology.
  •  
3.
  • Correa, Yubexi, et al. (författare)
  • Lipid exchange of apolipoprotein A-I amyloidogenic variants in reconstituted high-density lipoprotein with artificial membranes
  • 2024
  • Ingår i: Protein Science. - : John Wiley & Sons. - 0961-8368 .- 1469-896X. ; 33:5
  • Tidskriftsartikel (refereegranskat)abstract
    • High-density lipoproteins (HDLs) are responsible for removing cholesterol from arterial walls, through a process known as reverse cholesterol transport. The main protein in HDL, apolipoprotein A-I (ApoA-I), is essential to this process, and changes in its sequence significantly alter HDL structure and functions. ApoA-I amyloidogenic variants, associated with a particular hereditary degenerative disease, are particularly effective at facilitating cholesterol removal, thus protecting carriers from cardiovascular disease. Thus, it is conceivable that reconstituted HDL (rHDL) formulations containing ApoA-I proteins with functional/structural features similar to those of amyloidogenic variants hold potential as a promising therapeutic approach. Here we explored the effect of protein cargo and lipid composition on the function of rHDL containing one of the ApoA-I amyloidogenic variants G26R or L174S by Fourier transformed infrared spectroscopy and neutron reflectometry. Moreover, small-angle x-ray scattering uncovered the structural and functional differences between rHDL particles, which could help to comprehend higher cholesterol efflux activity and apparent lower phospholipid (PL) affinity. Our findings indicate distinct trends in lipid exchange (removal vs. deposition) capacities of various rHDL particles, with the rHDL containing the ApoA-I amyloidogenic variants showing a markedly lower ability to remove lipids from artificial membranes compared to the rHDL containing the native protein. This effect strongly depends on the level of PL unsaturation and on the particles' ultrastructure. The study highlights the importance of the protein cargo, along with lipid composition, in shaping rHDL structure, contributing to our understanding of lipid-protein interactions and their behavior.
  •  
4.
  • Cronjé, Héléne T., et al. (författare)
  • Genetic evidence implicating natriuretic peptide receptor-3 in cardiovascular disease risk : a Mendelian randomization study
  • 2023
  • Ingår i: BMC Medicine. - 1741-7015. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: C-type natriuretic peptide (CNP) is a known target for promoting growth and has been implicated as a therapeutic opportunity for the prevention and treatment of cardiovascular disease (CVD). This study aimed to explore the effect of CNP on CVD risk using the Mendelian randomization (MR) framework. Methods: Instrumental variables mimicking the effects of pharmacological intervention on CNP were identified as uncorrelated genetic variants located in the genes coding for its primary receptors, natriuretic peptide receptors-2 and 3 (NPR2 and NPR3), that associated with height. We performed MR and colocalization analyses to investigate the effects of NPR2 signalling and NPR3 function on CVD outcomes and risk factors. MR estimates were compared to those obtained when considering height variants from throughout the genome. Results: Genetically-proxied reduced NPR3 function was associated with a lower risk of CVD, with odds ratio (OR) 0.74 per standard deviation (SD) higher NPR3-predicted height, and 95% confidence interval (95% CI) 0.64–0.86. This effect was greater in magnitude than observed when considering height variants from throughout the genome. For CVD subtypes, similar MR associations for NPR3-predicted height were observed when considering the outcomes of coronary artery disease (0.75, 95% CI 0.60–0.92), stroke (0.69, 95% CI 0.50–0.95) and heart failure (0.77, 95% CI 0.58–1.02). Consideration of CVD risk factors identified systolic blood pressure (SBP) as a potential mediator of the NPR3-related CVD risk lowering. For stroke, we found that the MR estimate for NPR3 was greater in magnitude than could be explained by a genetically predicted SBP effect alone. Colocalization results largely supported the MR findings, with no evidence of results being driven by effects due to variants in linkage disequilibrium. There was no MR evidence supporting effects of NPR2 on CVD risk, although this null finding could be attributable to fewer genetic variants being identified to instrument this target. Conclusions: This genetic analysis supports the cardioprotective effects of pharmacologically inhibiting NPR3 receptor function, which is only partly mediated by an effect on blood pressure. There was unlikely sufficient statistical power to investigate the cardioprotective effects of NPR2 signalling.
  •  
5.
  • Del Giudice, Rita, et al. (författare)
  • High-efficient bacterial production of human ApoA-I amyloidogenic variants
  • 2018
  • Ingår i: Protein Science. - : Wiley. - 0961-8368. ; 27:12, s. 2101-2109
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein A-I (ApoA-I)-related amyloidosis is a rare disease caused by missense mutations in the APOA1 gene. These mutations lead to protein aggregation and abnormal accumulation of ApoA-I amyloid fibrils in heart, liver, kidneys, skin, nerves, ovaries, or testes. Consequently, the carriers are at risk of single- or multi-organ failure and of need of organ transplantation. Understanding the basic molecular structure and function of ApoA-I amyloidogenic variants, as well as their biological effects, is, therefore, of great interest. However, the intrinsic low stability of this type of proteins makes their overexpression and purification difficult. To overcome this barrier, we here describe an optimized production and purification procedure for human ApoA-I amyloidogenic proteins that efficiently provides between 46 mg and 91 mg (depending on the protein variant) of pure protein per liter of Escherichia coli culture. Structural integrity of the amyloidogenic and native ApoA-I proteins were verified by circular dichroism spectroscopy and intrinsic fluorescence analysis, and preserved functionality was demonstrated by use of a lipid clearance assay as well as by reconstitution of high-density lipoprotein (HDL) particles. In conclusion, the use of the described high-yield protein production system to obtain amyloidogenic ApoA-I proteins, and their native counterpart, will enable molecular and cellular experimental studies aimed to explain the molecular basis for this rare disease.
  •  
6.
  • Del Giudice, Rita, et al. (författare)
  • Structural determinants in ApoA-I amyloidogenic variants explain improved cholesterol metabolism despite low HDL levels
  • 2017
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier BV. - 0006-3002. ; 1863:12, s. 3038-3048
  • Tidskriftsartikel (refereegranskat)abstract
    • Twenty Apolipoprotein A-I (ApoA-I) variants are responsible for a systemic hereditary amyloidosis in which protein fibrils can accumulate in different organs, leading to their failure. Several ApoA-I amyloidogenic mutations are also associated with hypoalphalipoproteinemia, low ApoA-I and high-density lipoprotein (HDL)-cholesterol plasma levels; however, subjects affected by ApoA-I-related amyloidosis do not show a higher risk of cardiovascular diseases (CVD). The structural features, the lipid binding properties and the functionality of four ApoA-I amyloidogenic variants were therefore inspected in order to clarify the paradox observed in the clinical phenotype of the affected subjects. Our results show that ApoA-I amyloidogenic variants are characterized by a different oligomerization pattern and that the position of the mutation in the ApoA-I sequence affects the molecular structure of the formed HDL particles. Although lipidation increases ApoA-I proteins stability, all the amyloidogenic variants analyzed show a lower affinity for lipids, both in vitro and in ex vivo mouse serum. Interestingly, the lower efficiency at forming HDL particles is compensated by a higher efficiency at catalysing cholesterol efflux from macrophages. The decreased affinity of ApoA-I amyloidogenic variants for lipids, together with the increased efficiency in the cholesterol efflux process, could explain why, despite the unfavourable lipid profile, patients affected by ApoA-I related amyloidosis do not show a higher CVD risk.
  •  
7.
  • Del Giudice, Rita, et al. (författare)
  • The Apparent Organ-Specificity of Amyloidogenic ApoA-I Variants Is Linked to Tissue-Specific Extracellular Matrix Components
  • 2023
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein A-I (ApoA-I) amyloidosis is a rare protein misfolding disease where fibrils of the N-terminal domain of the protein accumulate in several organs, leading to their failure. Although ApoA-I amyloidosis is systemic, the different amyloidogenic variants show a preferential tissue accumulation that appears to correlate with the location of the mutation in the protein sequence and with the local extracellular microenvironment. However, the factors leading to cell/tissues damage, as well as the mechanisms behind the observed organ specificity are mostly unknown. Therefore, we investigated the impact of ApoA-I variants on cell physiology and the mechanisms driving the observed tissue specificity. We focused on four ApoA-I amyloidogenic variants and analyzed their cytotoxicity as well as their ability to alter redox homeostasis in cell lines from different tissues (liver, kidney, heart, skin). Moreover, variant-specific interactions with extracellular matrix (ECM) components were measured by synchrotron radiation circular dichroism and enzyme-linked immunosorbent assay. Data indicated that ApoA-I variants exerted a cytotoxic effect in a time and cell-type-specific manner that seems to be due to protein accumulation in lysosomes. Interestingly, the ApoA-I variants exhibited specific preferential binding to the ECM components, reflecting their tissue accumulation pattern in vivo. While the binding did not to appear to affect protein conformations in solution, extended incubation of the amyloidogenic variants in the presence of different ECM components resulted in different aggregation propensity and aggregation patterns.
  •  
8.
  • Domingo-Espín, Joan, et al. (författare)
  • Dual actions of apolipoprotein A-I on glucose-stimulated insulin secretion and insulin-independent peripheral tissue glucose uptake lead to increased heart and skeletal muscle glucose disposal
  • 2016
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 65:7, s. 1838-1848
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein A-I (apoA-I) of HDL is central to the transport of cholesterol in circulation. ApoA-I also provides glucose control with described in vitro effects of apoA-I on β-cell insulin secretion and muscle glucose uptake. In addition, apoA-I injections in insulin-resistant diet-induced obese (DIO) mice lead to increased glucose-stimulated insulin secretion (GSIS) and peripheral tissue glucose uptake. However, the relative contribution of apoA-I as an enhancer of GSIS in vivo and as a direct stimulator of insulin-independent glucose uptake is not known. Here, DIO mice with instant and transient blockade of insulin secretion were used in glucose tolerance tests and in positron emission tomography analyses. Data demonstrate that apoA-I to an equal extent enhances GSIS and acts as peripheral tissue activator of insulin-independent glucose uptake and verify skeletal muscle as an apoA-I target tissue. Intriguingly, our analyses also identify the heart as an important target tissue for the apoA-I-stimulated glucose uptake, with potential implications in diabetic cardiomyopathy. Explorations of apoA-I as a novel antidiabetic drug should extend to treatments of diabetic cardiomyopathy and other cardiovascular diseases in patients with diabetes.
  •  
9.
  • Domingo-Espín, Joan, et al. (författare)
  • Site-specific glycations of apolipoprotein A-I lead to differentiated functional effects on lipid-binding and on glucose metabolism
  • 2018
  • Ingår i: Biochimica et Biophysica Acta - Molecular Basis of Disease. - : Elsevier BV. - 0925-4439. ; 1864:9, s. 2822-2834
  • Tidskriftsartikel (refereegranskat)abstract
    • Prolonged hyperglycemia in poorly controlled diabetes leads to an increase in reactive glucose metabolites that covalently modify proteins by non-enzymatic glycation reactions. Apolipoprotein A-I (apoA-I) of high-density lipoprotein (HDL) is one of the proteins that becomes glycated in hyperglycemia. The impact of glycation on apoA-I protein structure and function in lipid and glucose metabolism were investigated. ApoA-I was chemically glycated by two different glucose metabolites (methylglyoxal and glycolaldehyde). Synchrotron radiation and conventional circular dichroism spectroscopy were used to study apoA-I structure and stability. The ability to bind lipids was measured by lipid-clearance assay and native gel analysis, and cholesterol efflux was measured by using lipid-laden J774 macrophages. Diet induced obese mice with established insulin resistance, L6 rat and C2C12 mouse myocytes, as well as INS-1E rat insulinoma cells, were used to determine in vivo and in vitro glucose uptake and insulin secretion. Site-specific, covalent modifications of apoA-I (lysines or arginines) led to altered protein structure, reduced lipid binding capability and a reduced ability to catalyze cholesterol efflux from macrophages, partly in a modification-specific manner. The stimulatory effects of apoA-I on the in vivo glucose clearance were negatively affected when apoA-I was modified with methylglyoxal, but not with glycolaldehyde. The in vitro data showed that both glucose uptake in muscle cells and insulin secretion from beta cells were affected. Taken together, glycation modifications impair the apoA-I protein functionality in lipid and glucose metabolism, which is expected to have implications for diabetes patients with poorly controlled blood glucose.
  •  
10.
  • Dwivedi, Om Prakash, et al. (författare)
  • Loss of ZnT8 function protects against diabetes by enhanced insulin secretion
  • 2019
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; , s. 1-22
  • Tidskriftsartikel (refereegranskat)abstract
    • A rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.Arg325. In genome-edited human induced pluripotent stem cell (iPSC)-derived β-like cells, we establish that the p.Arg138* allele results in reduced SLC30A8 expression due to haploinsufficiency. In human β cells, loss of SLC30A8 leads to increased glucose responsiveness and reduced KATP channel function similar to isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aimed at maintaining insulin secretion capacity in T2D.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 32
Typ av publikation
Typ av innehåll
refereegranskat (31)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Persson, Bengt L. (4)
Voss, J. C. (4)
Eliasson, Lena (3)
Artner, Isabella (3)
Ahlqvist, Emma (2)
Lindqvist, Andreas (2)
visa fler...
Wierup, Nils (2)
Obici, Laura (2)
Volkov, Petr (2)
Prasad, Rashmi B. (2)
Krus, Ulrika (2)
Grönberg, Caitriona (2)
Tuomi, Tiinamaija (1)
Groop, Leif (1)
Hansson, Ola (1)
Fex, Malin (1)
Ramracheya, Reshma (1)
Hamilton, Alexander (1)
Mulder, Hindrik (1)
Rorsman, Patrik (1)
Adamska, Iwona (1)
Otonkoski, Timo (1)
Ekström, Simon (1)
Schoefs, Benoît (1)
Perfilyev, Alexander (1)
Rönn, Tina (1)
Ling, Charlotte (1)
Bernfur, Katja (1)
McCarthy, Mark I (1)
Han, Lu (1)
Svensson, Daniel (1)
Nilsson, Bengt-Olof (1)
Baras, Aris (1)
Cardenas, Marite (1)
Barghouth, Mohammad (1)
Luan, Cheng (1)
Spetea Wiklund, Corn ... (1)
Gloyn, Anna L (1)
Kiens, Bente (1)
Hebert, Hans (1)
Bacos, Karl (1)
Wieslander, Åke (1)
Hedenbro, Jan (1)
Roosen-Runge, Felix (1)
Davies, Benjamin (1)
Terry, Ann (1)
Ruhrmann, Sabrina (1)
Hovingh, G. Kees (1)
Roberts, L. M. (1)
Kryvokhyzha, Dmytro (1)
visa färre...
Lärosäte
Lunds universitet (20)
Göteborgs universitet (6)
Stockholms universitet (5)
Malmö universitet (4)
Linköpings universitet (2)
Karolinska Institutet (2)
visa fler...
Kungliga Tekniska Högskolan (1)
Linnéuniversitetet (1)
visa färre...
Språk
Engelska (30)
Odefinierat språk (2)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (23)
Naturvetenskap (11)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy