SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lahti Jari) "

Sökning: WFRF:(Lahti Jari)

  • Resultat 1-10 av 31
  • [1]234Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barban, Nicola, et al. (författare)
  • Genome-wide analysis identifies 12 loci influencing human reproductive behavior
  • 2016
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 48:12, s. 1462-1472
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic architecture of human reproductive behavior age at first birth (AFB) and number of children ever born (NEB) has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits.
  •  
2.
  • Bolton, Jennifer L., et al. (författare)
  • Genome Wide Association Identifies Common Variants at the SERPINA6/SERPINA1 Locus Influencing Plasma Cortisol and Corticosteroid Binding Globulin.
  • 2014
  • Ingår i: PLoS genetics. - 1553-7404. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Variation in plasma levels of cortisol, an essential hormone in the stress response, is associated in population-based studies with cardio-metabolic, inflammatory and neuro-cognitive traits and diseases. Heritability of plasma cortisol is estimated at 30-60% but no common genetic contribution has been identified. The CORtisol NETwork (CORNET) consortium undertook genome wide association meta-analysis for plasma cortisol in 12,597 Caucasian participants, replicated in 2,795 participants. The results indicate that <1% of variance in plasma cortisol is accounted for by genetic variation in a single region of chromosome 14. This locus spans SERPINA6, encoding corticosteroid binding globulin (CBG, the major cortisol-binding protein in plasma), and SERPINA1, encoding alpha 1-antitrypsin (which inhibits cleavage of the reactive centre loop that releases cortisol from CBG). Three partially independent signals were identified within the region, represented by common SNPs; detailed biochemical investigation in a nested sub-cohort showed all these SNPs were associated with variation in total cortisol binding activity in plasma, but some variants influenced total CBG concentrations while the top hit (rs12589136) influenced the immunoreactivity of the reactive centre loop of CBG. Exome chip and 1000 Genomes imputation analysis of this locus in the CROATIA-Korcula cohort identified missense mutations in SERPINA6 and SERPINA1 that did not account for the effects of common variants. These findings reveal a novel common genetic source of variation in binding of cortisol by CBG, and reinforce the key role of CBG in determining plasma cortisol levels. In turn this genetic variation may contribute to cortisol-associated degenerative diseases.
3.
  • Davies, Gail, et al. (författare)
  • Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function
  • 2018
  • Ingår i: Nature Communications. - Nature Publishing Group. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P < 5 × 10-8) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.
4.
  • Fretts, Amanda M., et al. (författare)
  • Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores : a meta-analysis of 50,345 Caucasians
  • 2015
  • Ingår i: American Journal of Clinical Nutrition. - 0002-9165. ; 102:5, s. 1266-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus. Design: Fourteen studies that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium participated in the analysis. Data were provided for up to 50,345 participants. Using linear regression within studies and a fixed-effects meta-analysis across studies, we examined l) the associations of processed meat and unprocessed red meat intake with fasting glucose and insulin concentrations; and 2) the interactions of processed meat and unprocessed red meat with genetic risk score related to fasting glucose or insulin resistance on fasting glucose and insulin concentrations. Results: Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049-1n-pmon (95% CI: 0.035, 0.063-1n-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic loci known to influence fasting glucose or insulin resistance. Conclusion: The association of higher fasting glucose and insulin concentrations with meat consumption was not modified by an index of glucose- and insulin-related single-nucleotide polymorphisms.
  •  
5.
  • Haljas, Kadri, et al. (författare)
  • Bivariate genome-wide association study of depressive symptoms with type 2 diabetes and quantitative glycemic traits
  • 2018
  • Ingår i: Psychosomatic Medicine. - Lippincott Williams and Wilkins. - 0033-3174. ; 80:3, s. 242-251
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Shared genetic background may explain phenotypic associations between depression and Type 2 diabetes (T2D). We aimed to study, on a genome-wide level, if genetic correlation and pleiotropic loci exist between depressive symptoms and T2D or glycemic traits. Methods: We estimated single-nucleotide polymorphism (SNP)-based heritability and analyzed genetic correlation between depressive symptoms and T2D and glycemic traits with the linkage disequilibrium score regression by combining summary statistics of previously conducted meta-analyses for depressive symptoms by CHARGE consortium (N = 51,258), T2D by DIAGRAM consortium (N = 34,840 patients and 114,981 controls), fasting glucose, fasting insulin, and homeostatic model assessment of β-cell function and insulin resistance by MAGIC consortium (N = 58,074). Finally, we investigated pleiotropic loci using a bivariate genome-wide association study approach with summary statistics from genome-wide association study meta-analyses and reported loci with genome-wide significant bivariate association p value (p < 5 10−8). Biological annotation and function of significant pleiotropic SNPs were assessed in several databases. Results: The SNP-based heritability ranged from 0.04 to 0.10 in each individual trait. In the linkage disequilibrium score regression analyses, depressive symptoms showed no significant genetic correlation with T2D or glycemic traits (p > 0.37). However, we identified pleiotropic genetic variations for depressive symptoms and T2D (in the IGF2BP2, CDKAL1, CDKN2B-AS, and PLEKHA1 genes), and fasting glucose (in the MADD, CDKN2B-AS, PEX16, and MTNR1B genes). Conclusions: We found no significant overall genetic correlations between depressive symptoms, T2D, or glycemic traits suggesting major differences in underlying biology of these traits. However, several potential pleiotropic loci were identified between depressive symptoms, T2D, and fasting glucose, suggesting that previously established phenotypic associations may be partly explained by genetic variation in these specific loci.
  •  
6.
  • Haljas, Kadri, et al. (författare)
  • Melatonin receptor 1B gene rs10830963 polymorphism, depressive symptoms and glycaemic traits
  • 2018
  • Ingår i: Annals of Medicine. - Informa Healthcare. - 0785-3890. ; 50:8, s. 704-712
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The association between depression and type 2 diabetes is bidirectional. Underlying biological determinants remain elusive. We examined whether a common melatonin receptor 1B gene diabetes risk variant rs10830963 influenced the associations between depressive symptoms and glycaemic traits. Materials: The Prevalence, Prediction and Prevention of Diabetes-Botnia Study participants (n = 4,455) with no diabetes who underwent an oral glucose tolerance test were genotyped for rs10830963 and completed the Mental Health Inventory on depressive symptoms. Results: The rs10830963 did not influence significantly the associations between depressive symptoms and glycaemic traits. Yet, the addition of each copy of the minor G allele of the rs1080963 and higher depressive symptoms were both, independent of each other, associated significantly with higher glucose response (glucose area under the curve), higher insulin resistance (Insulin Sensitivity Index) and lower insulin secretion (Disposition Index). Depressive symptoms, but not rs1080963, were also significantly associated with higher fasting insulin, insulin area under the curve and insulin resistance (Homeostasis Model Assessment, Homeostasis Model Assessment-2); rs1080963, but not depressive symptoms, was significantly associated with higher fasting glucose and lower Corrected Insulin Response. Conclusions: Our study shows that the diabetes risk variant rs10830963 does not contribute to the known comorbidity between depression and type 2 diabetes.Key messages The association between depression and type 2 diabetes is bidirectional. We tested whether a common variant rs10830963 in the gene encoding Melatonin Receptor 1B influences the known association between depressive symptoms and glycaemic traits in a population-based sample from Western Finland. The MTNR1B genetic diabetes risk variant rs10830963 does not contribute to the known comorbidity between depression and type 2 diabetes. Depressive symptoms and rs10830963 are associated with a worse glycaemic profile independently of each other.
  •  
7.
  • Haljas, Kadri, et al. (författare)
  • The associations of daylight and melatonin receptor 1B gene rs10830963 variant with glycemic traits : the prospective PPP-Botnia study
  • 2019
  • Ingår i: Annals of Medicine. - Informa Healthcare. - 0785-3890. ; 51:1, s. 58-67
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Seasonal variation in glucose metabolism might be driven by changes in daylight. Melatonin entrains circadian regulation and is directly associated with daylight. The relationship between melatonin receptor 1B gene variants with glycemic traits and type 2 diabetes is well established. We studied if daylight length was associated with glycemic traits and if it modified the relationship between melatonin receptor 1B gene rs10830963 variant and glycemic traits. Materials: A population-based sample of 3422 18–78-year-old individuals without diabetes underwent an oral glucose tolerance test twice, an average 6.8 years (SD = 0.9) apart and were genotyped for rs10830963. Daylight data was obtained from the Finnish Meteorological Institute. Results: Cross-sectionally, more daylight was associated with lower fasting glucose, but worse insulin sensitivity and secretion at follow-up. Longitudinally, individuals studied on lighter days at follow-up than at baseline showed higher glucose values during the oral glucose tolerance test and lower Corrected Insulin Response at follow-up. GG genotype carriers in the rs10830963 became more insulin resistant during follow-up if daylight length was shorter at follow-up than at baseline. Conclusions: Our study shows that individual glycemic profiles may vary according to daylight, MTNR1B genotype and their interaction. Future studies may consider taking daylight length into account.Key messages In Western Finland, the amount daylight follows an extensive annual variation ranging from 4 h 44 min to 20 h 17 min, making it ideal to study the associations between daylight and glycemic traits. Moreover, this allows researchers to explore if the relationship between the melatonin receptor 1B gene rs10830963 variant and glycemic traits is modified by the amount of daylight both cross-sectionally and longitudinally. This study shows that individuals, who participated in the study on lighter days at the follow-up than at the baseline, displayed to a greater extent worse glycemic profiles across the follow-up. Novel findings from the current study show that in the longitudinal analyses, each addition of the minor G allele of the melatonin receptor 1B gene rs10830963 was associated with worsening of fasting glucose values and insulin secretion across the 6.8-year follow-up. Importantly, this study shows that in those with the rs10830963 GG genotype, insulin sensitivity deteriorated the most significantly across the 6.8-year follow-up if the daylight length on the oral glucose tolerance testing date at the follow-up was shorter than at the baseline. Taken together, the current findings suggest that the amount of daylight may affect glycemic traits, especially fasting glucose and insulin secretion even though the effect size is small. The association can very according to the rs10830963 risk variant. Further research is needed to elucidate the mechanisms behind these associations.
  •  
8.
  • Joshi, Peter K, et al. (författare)
  • Directional dominance on stature and cognition in diverse human populations
  • 2015
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 523:7561, s. 459-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P &lt; 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
  •  
9.
  • Karasik, David, et al. (författare)
  • Disentangling the genetics of lean mass
  • 2019
  • Ingår i: American Journal of Clinical Nutrition. - Oxford University Press. - 0002-9165 .- 1938-3207. ; 109:2, s. 276-287
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lean body mass (LM) plays an important role in mobility and metabolic function. We previously identified five loci associated with LM adjusted for fat mass in kilograms. Such an adjustment may reduce the power to identify genetic signals having an association with both lean mass and fat mass. Objectives: To determine the impact of different fat mass adjustments on genetic architecture of LM and identify additional LM loci. Methods: We performed genome-wide association analyses for whole-body LM (20 cohorts of European ancestry with n = 38,292) measured using dual-energy X-ray absorptiometry) or bioelectrical impedance analysis, adjusted for sex, age, age(2), and height with or without fat mass adjustments (Model 1 no fat adjustment; Model 2 adjustment for fat mass as a percentage of body mass; Model 3 adjustment for fat mass in kilograms). Results: Seven single-nucleotide polymorphisms (SNPs) in separate loci, including one novel LM locus (TNRC6B), were successfully replicated in an additional 47,227 individuals from 29 cohorts. Based on the strengths of the associations in Model 1 vs Model 3, we divided the LM loci into those with an effect on both lean mass and fat mass in the same direction and refer to those as "sumo wrestler" loci (FTO and MC4R). In contrast, loci with an impact specifically on LMwere termed "body builder" loci (VCAN and ADAMTSL3). Using existing available genome-wide association study databases, LM increasing alleles of SNPs in sumo wrestler loci were associated with an adverse metabolic profile, whereas LM increasing alleles of SNPs in "body builder" loci were associated with metabolic protection. Conclusions: In conclusion, we identified one novel LM locus (TNRC6B). Our results suggest that a genetically determined increase in lean mass might exert either harmful or protective effects on metabolic traits, depending on its relation to fat mass.
  •  
10.
  • Kilpeläinen, Tuomas O, et al. (författare)
  • Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels
  • 2016
  • Ingår i: Nature Communications. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P &lt; 10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P &lt; 5 x 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31
  • [1]234Nästa
Åtkomst
fritt online (14)
Typ av publikation
tidskriftsartikel (31)
Typ av innehåll
refereegranskat (31)
Författare/redaktör
Eriksson, Johan G. (29)
Hofman, Albert, (20)
Uitterlinden, Andre ... (19)
Van Duijn, Cornelia ... (16)
Hayward, Caroline (16)
Campbell, Harry (16)
visa fler...
Widen, Elisabeth (16)
Salomaa, Veikko (15)
Ingelsson, Erik (14)
Lind, Lars, (13)
Gieger, Christian (13)
Polasek, Ozren (13)
Perola, Markus (13)
Boomsma, Dorret I., (12)
Gudnason, Vilmundur, (12)
Wareham, Nicholas J. (12)
Raitakari, Olli T (11)
Amin, Najaf, (11)
Ferrucci, Luigi, (11)
Hottenga, Jouke-Jan, (11)
Lehtimäki, Terho, (11)
Willemsen, Gonneke (11)
Esko, Tonu (11)
Kutalik, Zoltan (11)
Vitart, Veronique (11)
Jula, Antti (11)
Martin, Nicholas G., (10)
Deloukas, Panos (10)
Kähönen, Mika, (10)
Mangino, Massimo (10)
Luan, Jian'an (10)
Feitosa, Mary F. (10)
Prokopenko, Inga (10)
Morris, Andrew P. (10)
Smith, Albert V., (9)
Teumer, Alexander, (9)
Montgomery, Grant W. ... (9)
Rotter, Jerome I., (9)
Schmidt, Reinhold, (9)
Deary, Ian J., (9)
Schmidt, Helena, (9)
Stancáková, Alena, (9)
Laakso, Markku, (9)
Chasman, Daniel I., (9)
Langenberg, Claudia (9)
Spector, Tim D. (9)
Jarvelin, Marjo-Riit ... (9)
Eriksson, Joel, (9)
Rivadeneira, Fernand ... (9)
Kolcic, Ivana (9)
visa färre...
Lärosäte
Uppsala universitet (22)
Lunds universitet (15)
Karolinska Institutet (14)
Göteborgs universitet (13)
Umeå universitet (7)
Stockholms universitet (2)
visa fler...
Mittuniversitetet (2)
Örebro universitet (1)
Högskolan i Jönköping (1)
visa färre...
Språk
Engelska (31)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (31)
Naturvetenskap (5)
Samhällsvetenskap (1)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy