SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lai Chao Qiang) "

Sökning: WFRF:(Lai Chao Qiang)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gkrania-Klotsas, Effrossyni, et al. (författare)
  • Differential White Blood Cell Count and Type 2 Diabetes : Systematic Review and Meta-Analysis of Cross-Sectional and Prospective Studies
  • 2010
  • Ingår i: PloS one. - 1932-6203. ; 5:10, s. e13405-
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Biological evidence suggests that inflammation might induce type 2 diabetes (T2D), and epidemiological studies have shown an association between higher white blood cell count (WBC) and T2D. However, the association has not been systematically investigated. RESEARCH DESIGN AND METHODS: Studies were identified through computer-based and manual searches. Previously unreported studies were sought through correspondence. 20 studies were identified (8,647 T2D cases and 85,040 non-cases). Estimates of the association of WBC with T2D were combined using random effects meta-analysis; sources of heterogeneity as well as presence of publication bias were explored. RESULTS: The combined relative risk (RR) comparing the top to bottom tertile of the WBC count was 1.61 (95% CI: 1.45; 1.79, p = 1.5*10(-18)). Substantial heterogeneity was present (I(2) = 83%). For granulocytes the RR was 1.38 (95% CI: 1.17; 1.64, p = 1.5*10(-4)), for lymphocytes 1.26 (95% CI: 1.02; 1.56, p = 0.029), and for monocytes 0.93 (95% CI: 0.68; 1.28, p = 0.67) comparing top to bottom tertile. In cross-sectional studies, RR was 1.74 (95% CI: 1.49; 2.02, p = 7.7*10(-13)), while in cohort studies it was 1.48 (95% CI: 1.22; 1.79, p = 7.7*10(-5)). We assessed the impact of confounding in EPIC-Norfolk study and found that the age and sex adjusted HR of 2.19 (95% CI: 1.74; 2.75) was attenuated to 1.82 (95% CI: 1.45; 2.29) after further accounting for smoking, T2D family history, physical activity, education, BMI and waist circumference. CONCLUSIONS: A raised WBC is associated with higher risk of T2D. The presence of publication bias and failure to control for all potential confounders in all studies means the observed association is likely an overestimate.
  •  
2.
  • Forskningsöversikt (refereegranskat)
  •  
3.
  • Ding, Ming, et al. (författare)
  • Dairy consumption, systolic blood pressure, and risk of hypertension : Mendelian randomization study
  • 2017
  • Ingår i: BMJ. British Medical Journal. - : BMJ Publishing Group Ltd. - 1756-1833. ; 356
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE To examine whether previous observed inverse associations of dairy intake with systolic blood pressure and risk of hypertension were causal. DESIGN Mendelian randomization study using the single nucleotide polymorphism rs4988235 related to lactase persistence as an instrumental variable. SETTING CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium. PARTICIPANTS Data from 22 studies with 171 213 participants, and an additional 10 published prospective studies with 26 119 participants included in the observational analysis. MAIN OUTCOME MEASURES The instrumental variable estimation was conducted using the ratio of coefficients approach. Using metaanalysis, an additional eight published randomized clinical trials on the association of dairy consumption with systolic blood pressure were summarized. RESULTS Compared with the CC genotype (CC is associated with complete lactase deficiency), the CT/TT genotype (TT is associated with lactose persistence, and CT is associated with certain lactase deficiency) of LCT-13910 (lactase persistence gene) rs4988235 was associated with higher dairy consumption (0.23 (about 55 g/day), 95% confidence interval 0.17 to 0.29) serving/day; P<0.001) and was not associated with systolic blood pressure (0.31, 95% confidence interval -0.05 to 0.68 mm Hg; P=0.09) or risk of hypertension (odds ratio 1.01, 95% confidence interval 0.97 to 1.05; P=0.27). Using LCT-13910 rs4988235 as the instrumental variable, genetically determined dairy consumption was not associated with systolic blood pressure (beta=1.35, 95% confidence interval -0.28 to 2.97 mm Hg for each serving/day) or risk of hypertension (odds ratio 1.04, 0.88 to 1.24). Moreover, meta-analysis of the published clinical trials showed that higher dairy intake has no significant effect on change in systolic blood pressure for interventions over one month to 12 months (intervention compared with control groups: beta=-0.21, 95% confidence interval -0.98 to 0.57 mm Hg). In observational analysis, each serving/day increase in dairy consumption was associated with -0.11 (95% confidence interval -0.20 to -0.02 mm Hg; P=0.02) lower systolic blood pressure but not risk of hypertension (odds ratio 0.98, 0.97 to 1.00; P=0.11). CONCLUSION The weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by a comprehensive instrumental variable analysis and systematic review of existing clinical trials.
  •  
4.
  • Fretts, Amanda M., et al. (författare)
  • Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores : a meta-analysis of 50,345 Caucasians
  • 2015
  • Ingår i: American Journal of Clinical Nutrition. - : American Society for Clinical Nutrition. - 0002-9165 .- 1938-3207. ; 102:5, s. 1266-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus. Design: Fourteen studies that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium participated in the analysis. Data were provided for up to 50,345 participants. Using linear regression within studies and a fixed-effects meta-analysis across studies, we examined l) the associations of processed meat and unprocessed red meat intake with fasting glucose and insulin concentrations; and 2) the interactions of processed meat and unprocessed red meat with genetic risk score related to fasting glucose or insulin resistance on fasting glucose and insulin concentrations. Results: Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049-1n-pmon (95% CI: 0.035, 0.063-1n-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic loci known to influence fasting glucose or insulin resistance. Conclusion: The association of higher fasting glucose and insulin concentrations with meat consumption was not modified by an index of glucose- and insulin-related single-nucleotide polymorphisms.
  •  
5.
  • Huang, Tao, et al. (författare)
  • Dairy Consumption and Body Mass Index Among Adults : Mendelian Randomization Analysis of 184802 Individuals from 25 Studies
  • 2018
  • Ingår i: Clinical Chemistry. - 0009-9147 .- 1530-8561. ; 64:1, s. 183-191
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Associations between dairy intake and body mass index (BMI) have been inconsistently observed in epidemiological studies, and the causal relationship remains ill defined.METHODS: We performed Mendelian randomization (MR) analysis using an established dairy intake-associated genetic polymorphism located upstream of the lactase gene (LCT-13910 C/T, rs4988235) as an instrumental variable (IV). Linear regression models were fitted to analyze associations between (a) dairy intake and BMI, (b) rs4988235 and dairy intake, and (c) rs4988235 and BMI in each study. The causal effect of dairy intake on BMI was quantified by IV estimators among 184802 participants from 25 studies.RESULTS: Higher dairy intake was associated with higher BMI (β = 0.03 kg/m2 per serving/day; 95% CI, 0.00–0.06; P = 0.04), whereas the LCT genotype with 1 or 2 T allele was significantly associated with 0.20 (95% CI, 0.14–0.25) serving/day higher dairy intake (P = 3.15 × 10−12) and 0.12 (95% CI, 0.06–0.17) kg/m2 higher BMI (P = 2.11 × 10−5). MR analysis showed that the genetically determined higher dairy intake was significantly associated with higher BMI (β = 0.60 kg/m2 per serving/day; 95% CI, 0.27–0.92; P = 3.0 × 10−4).CONCLUSIONS: The present study provides strong evidence to support a causal effect of higher dairy intake on increased BMI among adults.
  •  
6.
  • Orho-Melander, Marju, et al. (författare)
  • Common Missense Variant in the Glucokinase Regulatory Protein Gene Is Associated With Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations
  • 2008
  • Ingår i: Diabetes. - : American Diabetes Association Inc.. - 1939-327X. ; 57:11, s. 3112-3121
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Using the genome-wide association approach, we recently identified the glucokinase regulatory protein gene (GCKR, rs780094) region as a novel quantitative trait locus for plasma triglyceride concentration in Europeans. Here, we sought to study the association of GCKR variants with metabolic phenotypes, including measures of glucose homeostasis, to evaluate the GCYR locus in samples of non-European ancestry and to fine-map across the associated genomic interval. RESEARCH DESIGN AND METHODS-We performed association studies in 12 independent cohorts comprising >45,000 individuals representing several ancestral groups (whites from Northern and Southern Europe, whites from the U.S., African Americans from the U.S., Hispanics of Caribbean origin, and Chinese, Malays, and Asian Indians from Singapore). We conducted genetic fine-mapping across the similar to 417-kb region of linkage disequilibrium. spanning GCKR and 16 other genes on chromosome 2p23 by imputing untyped HapMap single nucleotide polymorphisms (SNPs) and genotyping 104 SNPs across the associated genomic interval. RESULTS-We provide comprehensive evidence that GCYR rs780094 is associated with opposite effects on fasting plasma triglyceride (P-meta = 3 x 10(-56)) and glucose (P-meta = 1 x 10(-13)) concentrations. In addition, we confirmed recent reports that the same SNP is associated with C-reactive protein (CRP) level (P = 5 x 10(-5)). Both fine-mapping approaches revealed a common missense GCKR variant (rs1260326, Pro446Leu, 34% frequency, r(2) = 0.93 with rs780094) as the strongest association signal in the region. CONCLUSIONS-These findings point to a molecular mechanism in humans by which higher triglycerides and CRP can be coupled with lower plasma glucose concentrations and position GCKR in central pathways regulating both hepatic triglyceride and glucose metabolism. Diabetes 57:3112-3121, 2008
  •  
7.
  • Perez-Martinez, Pablo, et al. (författare)
  • Association between glucokinase regulatory protein (GCKR) and apolipoprotein A5 (APOA5) gene polymorphisms and triacylglycerol concentrations in fasting, postprandial, and fenofibrate-treated states
  • 2009
  • Ingår i: American Journal of Clinical Nutrition. - : American Society for Clinical Nutrition. - 1938-3207. ; 89:1, s. 391-399
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Hypertriglyceridemia is a risk factor for cardiovascular disease. Variation in the apolipoprotein A5 (APOA5) and glucokinase regulatory protein (GCKR) genes has been associated with fasting plasma triacylglycerol. Objective: We investigated the combined effects of the GCKR rs780094C -> T, APOA5 -1131T -> C, and APOA5 56C -> G single nucleotide polymorphisms (SNPs) on fasting triacylglycerol in several independent populations and the response to a high-fat meal and fenofibrate interventions. Design: We used a cross-sectional design to investigate the association with fasting triacylglycerol in 8 populations from America, Asia, and Europe (n = 7730 men and women) and 2 intervention studies in US whites (n = `1061) to examine postprandial triacylglycerol after a high-fat meal and the response to fenofibrate. We defined 3 combined genotype groups: 1) protective (homozygous for the wild-type allele for all 3 SNPs); 2) intermediate (any mixed genotype not included in groups 1 and 3); and 3) risk (carriers of the variant alleles at both genes). Results: Subjects within the risk group had significantly higher fasting triacylglycerol and a higher prevalence of hypertriglyceridemia than did subjects in the protective group across all populations. Moreover, subjects in the risk group had a greater postprandial triacylglycerol response to a high-fat meal and greater fenofibrate-induced reduction of fasting triacylglycerol than did the other groups, especially among persons with hypertriglyceridemia. Subjects with the intermediate genotype had intermediate values (P for trend < 0.001). Conclusions: SNPs in GCKR and APOA5 have an additive effect on both fasting and postprandial triacylglycerol and contribute to the interindividual variability in response to fenofibrate treatment. Am J Clin Nutr 2009;89:391-9. Clin Nutr 2009; 89: 391-9.
  •  
8.
  • Smith, Caren E., et al. (författare)
  • Genome-Wide Interactions with Dairy Intake for Body Mass Index in Adults of European Descent
  • Ingår i: Molecular Nutrition and Food Research. - : John Wiley and Sons Inc.. - 1613-4125. ; 62:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Scope: Body weight responds variably to the intake of dairy foods. Genetic variation may contribute to inter-individual variability in associations between body weight and dairy consumption. Methods and results: A genome-wide interaction study to discover genetic variants that account for variation in BMI in the context of low-fat, high-fat and total dairy intake in cross-sectional analysis was conducted. Data from nine discovery studies (up to 25 513 European descent individuals) were meta-analyzed. Twenty-six genetic variants reached the selected significance threshold (p-interaction <10−7), and six independent variants (LINC01512-rs7751666, PALM2/AKAP2-rs914359, ACTA2-rs1388, PPP1R12A-rs7961195, LINC00333-rs9635058, AC098847.1-rs1791355) were evaluated meta-analytically for replication of interaction in up to 17 675 individuals. Variant rs9635058 (128 kb 3’ of LINC00333) was replicated (p-interaction = 0.004). In the discovery cohorts, rs9635058 interacted with dairy (p-interaction = 7.36 × 10−8) such that each serving of low-fat dairy was associated with 0.225 kg m−2 lower BMI per each additional copy of the effect allele (A). A second genetic variant (ACTA2-rs1388) approached interaction replication significance for low-fat dairy exposure. Conclusion: Body weight responses to dairy intake may be modified by genotype, in that greater dairy intake may protect a genetic subgroup from higher body weight.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy