SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lai Chao Qiang) ;conttype:(refereed)"

Sökning: WFRF:(Lai Chao Qiang) > Refereegranskat

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
4.
  • Ding, Ming, et al. (författare)
  • Dairy consumption, systolic blood pressure, and risk of hypertension : Mendelian randomization study
  • 2017
  • Ingår i: The BMJ. - : BMJ Publishing Group Ltd. - 1756-1833 .- 0959-8138. ; 356
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE To examine whether previous observed inverse associations of dairy intake with systolic blood pressure and risk of hypertension were causal. DESIGN Mendelian randomization study using the single nucleotide polymorphism rs4988235 related to lactase persistence as an instrumental variable. SETTING CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium. PARTICIPANTS Data from 22 studies with 171 213 participants, and an additional 10 published prospective studies with 26 119 participants included in the observational analysis. MAIN OUTCOME MEASURES The instrumental variable estimation was conducted using the ratio of coefficients approach. Using metaanalysis, an additional eight published randomized clinical trials on the association of dairy consumption with systolic blood pressure were summarized. RESULTS Compared with the CC genotype (CC is associated with complete lactase deficiency), the CT/TT genotype (TT is associated with lactose persistence, and CT is associated with certain lactase deficiency) of LCT-13910 (lactase persistence gene) rs4988235 was associated with higher dairy consumption (0.23 (about 55 g/day), 95% confidence interval 0.17 to 0.29) serving/day; P<0.001) and was not associated with systolic blood pressure (0.31, 95% confidence interval -0.05 to 0.68 mm Hg; P=0.09) or risk of hypertension (odds ratio 1.01, 95% confidence interval 0.97 to 1.05; P=0.27). Using LCT-13910 rs4988235 as the instrumental variable, genetically determined dairy consumption was not associated with systolic blood pressure (beta=1.35, 95% confidence interval -0.28 to 2.97 mm Hg for each serving/day) or risk of hypertension (odds ratio 1.04, 0.88 to 1.24). Moreover, meta-analysis of the published clinical trials showed that higher dairy intake has no significant effect on change in systolic blood pressure for interventions over one month to 12 months (intervention compared with control groups: beta=-0.21, 95% confidence interval -0.98 to 0.57 mm Hg). In observational analysis, each serving/day increase in dairy consumption was associated with -0.11 (95% confidence interval -0.20 to -0.02 mm Hg; P=0.02) lower systolic blood pressure but not risk of hypertension (odds ratio 0.98, 0.97 to 1.00; P=0.11). CONCLUSION The weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by a comprehensive instrumental variable analysis and systematic review of existing clinical trials.
  •  
5.
  • Fretts, Amanda M., et al. (författare)
  • Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores : a meta-analysis of 50,345 Caucasians
  • 2015
  • Ingår i: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165 .- 1938-3207. ; 102:5, s. 1266-1278
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus. Design: Fourteen studies that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium participated in the analysis. Data were provided for up to 50,345 participants. Using linear regression within studies and a fixed-effects meta-analysis across studies, we examined l) the associations of processed meat and unprocessed red meat intake with fasting glucose and insulin concentrations; and 2) the interactions of processed meat and unprocessed red meat with genetic risk score related to fasting glucose or insulin resistance on fasting glucose and insulin concentrations. Results: Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049-1n-pmon (95% CI: 0.035, 0.063-1n-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic loci known to influence fasting glucose or insulin resistance. Conclusion: The association of higher fasting glucose and insulin concentrations with meat consumption was not modified by an index of glucose- and insulin-related single-nucleotide polymorphisms.
  •  
6.
  • Gkrania-Klotsas, Effrossyni, et al. (författare)
  • Differential White Blood Cell Count and Type 2 Diabetes : Systematic Review and Meta-Analysis of Cross-Sectional and Prospective Studies
  • 2010
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 5:10, s. e13405-
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Biological evidence suggests that inflammation might induce type 2 diabetes (T2D), and epidemiological studies have shown an association between higher white blood cell count (WBC) and T2D. However, the association has not been systematically investigated. RESEARCH DESIGN AND METHODS: Studies were identified through computer-based and manual searches. Previously unreported studies were sought through correspondence. 20 studies were identified (8,647 T2D cases and 85,040 non-cases). Estimates of the association of WBC with T2D were combined using random effects meta-analysis; sources of heterogeneity as well as presence of publication bias were explored. RESULTS: The combined relative risk (RR) comparing the top to bottom tertile of the WBC count was 1.61 (95% CI: 1.45; 1.79, p = 1.5*10(-18)). Substantial heterogeneity was present (I(2) = 83%). For granulocytes the RR was 1.38 (95% CI: 1.17; 1.64, p = 1.5*10(-4)), for lymphocytes 1.26 (95% CI: 1.02; 1.56, p = 0.029), and for monocytes 0.93 (95% CI: 0.68; 1.28, p = 0.67) comparing top to bottom tertile. In cross-sectional studies, RR was 1.74 (95% CI: 1.49; 2.02, p = 7.7*10(-13)), while in cohort studies it was 1.48 (95% CI: 1.22; 1.79, p = 7.7*10(-5)). We assessed the impact of confounding in EPIC-Norfolk study and found that the age and sex adjusted HR of 2.19 (95% CI: 1.74; 2.75) was attenuated to 1.82 (95% CI: 1.45; 2.29) after further accounting for smoking, T2D family history, physical activity, education, BMI and waist circumference. CONCLUSIONS: A raised WBC is associated with higher risk of T2D. The presence of publication bias and failure to control for all potential confounders in all studies means the observed association is likely an overestimate.
  •  
7.
  • Huang, Tao, et al. (författare)
  • Dairy Consumption and Body Mass Index Among Adults : Mendelian Randomization Analysis of 184802 Individuals from 25 Studies
  • 2018
  • Ingår i: Clinical Chemistry. - : Oxford University Press (OUP). - 0009-9147 .- 1530-8561. ; 64:1, s. 183-191
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Associations between dairy intake and body mass index (BMI) have been inconsistently observed in epidemiological studies, and the causal relationship remains ill defined.METHODS: We performed Mendelian randomization (MR) analysis using an established dairy intake-associated genetic polymorphism located upstream of the lactase gene (LCT-13910 C/T, rs4988235) as an instrumental variable (IV). Linear regression models were fitted to analyze associations between (a) dairy intake and BMI, (b) rs4988235 and dairy intake, and (c) rs4988235 and BMI in each study. The causal effect of dairy intake on BMI was quantified by IV estimators among 184802 participants from 25 studies.RESULTS: Higher dairy intake was associated with higher BMI (β = 0.03 kg/m2 per serving/day; 95% CI, 0.00–0.06; P = 0.04), whereas the LCT genotype with 1 or 2 T allele was significantly associated with 0.20 (95% CI, 0.14–0.25) serving/day higher dairy intake (P = 3.15 × 10−12) and 0.12 (95% CI, 0.06–0.17) kg/m2 higher BMI (P = 2.11 × 10−5). MR analysis showed that the genetically determined higher dairy intake was significantly associated with higher BMI (β = 0.60 kg/m2 per serving/day; 95% CI, 0.27–0.92; P = 3.0 × 10−4).CONCLUSIONS: The present study provides strong evidence to support a causal effect of higher dairy intake on increased BMI among adults.
  •  
8.
  •  
9.
  • Lai, Chao-Qiang, et al. (författare)
  • Carbohydrate and fat intake associated with risk of metabolic diseases through epigenetics of CPT1A
  • 2020
  • Ingår i: American Journal of Clinical Nutrition. - : OXFORD UNIV PRESS. - 0002-9165 .- 1938-3207. ; 112:5, s. 1200-1211
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Epigenome-wide association studies identified the cg00574958 DNA methylation site at the carnitinc palmitoyltransferase-1A (CPT1A) gene to be associated with reduced risk of metabolic diseases (hypertriglyceridemia, obesity, type 2 diabetes, hypertension, metabolic syndrome). but the mechanism underlying these associations is unknown. Objectives: We aimed to elucidate whether carbohydrate and fat intakes modulate cg00574958 methylation and the risk of metabolic diseases. Methods: We examined associations between carbohydrate (CHO) and fat (FAT) intake, as percentages of total diet energy, and the CHO/FAT ratio with CPT1A-cg00574958, and the risk of metabolic diseases in 3 populations (Genetics of Lipid Lowering Drugs and Diet Network. n = 978; Framingham Heart Study. n = 2331: and REgistre GIroni del COR study, n = 645) while adjusting for confounding factors. To understand possible causal effects of dietary intake on the risk of metabolic diseases, we performed metaanalysis, CPT1A transcription analysis, and mediation analysis with CHO and FAT intakes as exposures and cg00574958 methylation as the mediator. Results: We confirmed strong associations of cg00574958 methylation with metabolic phenotypes (BMI, triglyceride, glucose) and diseases in all 3 populations. Our results showed that CHO intake and CHO/FAT ratio were positively associated with cg00574958 methylation. whereas FAT intake was negatively correlated with cg00574958 methylation. Meta-analysis further confirmed this strong correlation, with beta = 58.4 +/- 7.27, P = 8.98 x 10(-16) for CHO intake; beta = -36.4 +/- 5.95. P = 9.96 x 10(-10) for FAT intake; and beta = 3.30 +/- 0.49. P = 1.48 x 10(-11) for the CHO/FAT ratio. Furthermore, CPT1A mRNA expression was negatively associated with CHO intake, and positively associated with FAT intake, and metabolic phenotypes. Mediation analysis supports the hypothesis that CHO intake induces CPT1A methylation, hence reducing the risk of metabolic diseases, whereas FAT intake inhibits CPT1A methylation, thereby increasing the risk of metabolic diseases. Conclusions: Our results suggest that the proportion of total energy supplied by CHO and FAT can have a causal effect on the risk of metabolic diseases via the epigenetic status of CPT1A.
  •  
10.
  • Orho-Melander, Marju, et al. (författare)
  • Common Missense Variant in the Glucokinase Regulatory Protein Gene Is Associated With Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations
  • 2008
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 57:11, s. 3112-3121
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE-Using the genome-wide association approach, we recently identified the glucokinase regulatory protein gene (GCKR, rs780094) region as a novel quantitative trait locus for plasma triglyceride concentration in Europeans. Here, we sought to study the association of GCKR variants with metabolic phenotypes, including measures of glucose homeostasis, to evaluate the GCYR locus in samples of non-European ancestry and to fine-map across the associated genomic interval. RESEARCH DESIGN AND METHODS-We performed association studies in 12 independent cohorts comprising >45,000 individuals representing several ancestral groups (whites from Northern and Southern Europe, whites from the U.S., African Americans from the U.S., Hispanics of Caribbean origin, and Chinese, Malays, and Asian Indians from Singapore). We conducted genetic fine-mapping across the similar to 417-kb region of linkage disequilibrium. spanning GCKR and 16 other genes on chromosome 2p23 by imputing untyped HapMap single nucleotide polymorphisms (SNPs) and genotyping 104 SNPs across the associated genomic interval. RESULTS-We provide comprehensive evidence that GCYR rs780094 is associated with opposite effects on fasting plasma triglyceride (P-meta = 3 x 10(-56)) and glucose (P-meta = 1 x 10(-13)) concentrations. In addition, we confirmed recent reports that the same SNP is associated with C-reactive protein (CRP) level (P = 5 x 10(-5)). Both fine-mapping approaches revealed a common missense GCKR variant (rs1260326, Pro446Leu, 34% frequency, r(2) = 0.93 with rs780094) as the strongest association signal in the region. CONCLUSIONS-These findings point to a molecular mechanism in humans by which higher triglycerides and CRP can be coupled with lower plasma glucose concentrations and position GCKR in central pathways regulating both hepatic triglyceride and glucose metabolism. Diabetes 57:3112-3121, 2008
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (11)
forskningsöversikt (1)
Typ av innehåll
Författare/redaktör
Ordovás, José M. (7)
Orho-Melander, Marju (6)
Smith, Caren E. (5)
North, Kari E. (4)
Rotter, Jerome I. (4)
Hofman, Albert (4)
visa fler...
Uitterlinden, André ... (4)
Psaty, Bruce M (4)
Franco, Oscar H. (4)
Lemaitre, Rozenn N. (4)
Siscovick, David S. (4)
Overvad, Kim (3)
Mozaffarian, Dariush (3)
Johansson, Ingegerd (3)
Ericson, Ulrika (3)
Franks, Paul W. (3)
Schulz, Christina Al ... (3)
Pedersen, Oluf (3)
Hansen, Torben (3)
Renström, Frida (3)
Hu, Frank B. (3)
Sonestedt, Emily (3)
Rich, Stephen S (3)
Pennell, Craig E (3)
Tanaka, Toshiko (3)
Bandinelli, Stefania (3)
Raitakari, Olli (3)
Viikari, Jorma (2)
Nordestgaard, Borge ... (2)
Willett, Walter C. (2)
Hernandez, Dena (2)
Tjonneland, Anne (2)
Linneberg, Allan (2)
Ridker, Paul M. (2)
Chasman, Daniel I. (2)
Chu, Audrey Y (2)
Rose, Lynda M (2)
Qi, Lu (2)
Barroso, Ines (2)
Voortman, Trudy (2)
Jakobsson, J. (2)
Sorensen, Thorkild I ... (2)
Bozhkov, Peter (2)
Lehtimaki, Terho (2)
Kathiresan, Sekar (2)
Zillikens, M. Carola (2)
Liu, Yongmei (2)
Cupples, L. Adrienne (2)
Wang, Carol A (2)
Ferrucci, Luigi (2)
visa färre...
Lärosäte
Lunds universitet (7)
Umeå universitet (4)
Uppsala universitet (4)
Karolinska Institutet (4)
Göteborgs universitet (2)
Stockholms universitet (2)
visa fler...
Linköpings universitet (2)
Chalmers tekniska högskola (2)
Sveriges Lantbruksuniversitet (2)
Högskolan i Halmstad (1)
visa färre...
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy