SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Laine Hanna) ;lar1:(su)"

Search: WFRF:(Laine Hanna) > Stockholm University

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Allvin, Helen, et al. (author)
  • Characteristics of Finnish and Swedish intensive care nursing narratives : a comparative analysis to support the development of clinical language technologies
  • 2011
  • In: Journal of Biomedical Semantics. - 2041-1480. ; 2:S1, s. 1-11
  • Journal article (peer-reviewed)abstract
    • Background: Free text is helpful for entering information into electronic health records, but reusing it is a challenge. The need for language technology for processing Finnish and Swedish healthcare text is therefore evident; however, Finnish and Swedish are linguistically very dissimilar. In this paper we present a comparison of characteristics in Finnish and Swedish free-text nursing narratives from intensive care. This creates a framework for characterising and comparing clinical text and lays the groundwork for developing clinical language technologies. Methods: Our material included daily nursing narratives from one intensive care unit in Finland and one in Sweden. Inclusion criteria for patients were an inpatient period of least five days and an age of at least 16 years. We performed a comparative analysis as part of a collaborative effort between Finnish- and Swedish-speaking healthcare and language technology professionals that included both qualitative and quantitative aspects. The qualitative analysis addressed the content and structure of three average- sized health records from each country. In the quantitative analysis 514 Finnish and 379 Swedish health records were studied using various language technology tools. Results: Although the two languages are not closely related, nursing narratives in Finland and Sweden had many properties in common. Both made use of specialised jargon and their content was very similar. However, many of these characteristics were challenging regarding development of language technology to support producing and using clinical documentation. Conclusions: The way Finnish and Swedish intensive care nursing was documented, was not country or language dependent, but shared a common context, principles and structural features and even similar vocabulary elements. Technology solutions are therefore likely to be applicable to a wider range of natural languages, but they need linguistic tailoring. Availability: The Finnish and Swedish data can be found at: http://www.dsv.su.se/ hexanord/data/
  •  
2.
  • Shcherbacheva, Anna, et al. (author)
  • Identification of molecular cluster evaporation rates, cluster formation enthalpies and entropies by Monte Carlo method
  • 2020
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:24, s. 15867-15906
  • Journal article (peer-reviewed)abstract
    • We address the problem of identifying the evaporation rates for neutral molecular clusters from synthetic (computer-simulated) cluster concentrations. We applied Bayesian parameter estimation using a Markov chain Monte Carlo (MCMC) algorithm to determine cluster evaporation/fragmentation rates from synthetic cluster distributions generated by the Atmospheric Cluster Dynamics Code (ACDC) and based on gas kinetic collision rate coefficients and evaporation rates obtained using quantum chemical calculations and detailed balances. The studied system consisted of electrically neutral sulfuric acid and ammonia clusters with up to five of each type of molecules. We then treated the concentrations generated by ACDC as synthetic experimental data. With the assumption that the collision rates are known, we tested two approaches for estimating the evaporation rates from these data. First, we studied a scenario where time-dependent cluster distributions are measured at a single temperature before the system reaches a steady state. In the second scenario, only steady-state cluster distributions are measured but at several temperatures. Additionally, in the latter case, the evaporation rates were represented in terms of cluster formation enthalpies and entropies. This reparame-terization reduced the number of unknown parameters, since several evaporation rates depend on the same cluster formation enthalpy and entropy values. We also estimated the evap- oration rates using previously published synthetic steady-state cluster concentration data at one temperature and compared our two cases to this setting. Both the time-dependent and the two-temperature steady-state concentration data allowed us to estimate the evaporation rates with less variance than in the steady-state single-temperature case. We show that temperature-dependent steady-state data outperform single-temperature time-dependent data for parameter estimation, even if only two temperatures are used. We can thus conclude that for experimentally determining evaporation rates, cluster distribution measurements at several temperatures are recommended over time-dependent measurements at one temperature.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view