SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lamb Rob) "

Sökning: WFRF:(Lamb Rob)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beven, Keith J., et al. (författare)
  • Communicating uncertainty in flood inundation mapping : a case study
  • 2015
  • Ingår i: International Journal of River Basin Management. - 1571-5124 .- 1814-2060. ; 13:3, s. 285-295
  • Tidskriftsartikel (refereegranskat)abstract
    • An important issue in taking account of uncertainty in flood inundation mapping is the communication of the meaning of the outputs from an uncertainty analysis. In part this is because uncertainty estimation in this domain is not a simple statistical problem in that it involves knowledge uncertainties as well as statistical (aleatory) uncertainties in most of the important sources of uncertainty (estimated upstream discharges, effective roughness coefficients, flood plain and channel geometries and infrastructure, choice of model, fragility of defences, etc.). Thus, assumptions are required associated with the knowledge or lack of knowledge about these different sources of uncertainty. A framework has been developed in the form of a sequence of condition trees to help define these assumptions. Since stakeholders in the process can potentially be involved in making and recording decisions about those assumptions the framework also serves as a means of communicating the assumptions. Recording the decisions also serves to provide an audit trail for later evaluation of the decisions and hence the resulting analysis. Communication can also be helped in this type of spatial problem by effective visualization techniques and a visualization tool has been developed for both a web-based service using Google Maps™ and a desktop application using the Matlab™ numerical package.
  •  
2.
  • Beven, Keith J., et al. (författare)
  • Hyperresolution information and hyperresolution ignorance in modelling the hydrology of the land surface
  • 2015
  • Ingår i: SCIENCE CHINA-EARTH SCIENCES. - 1674-7313. ; 58:1, s. 25-35
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a strong drive towards hyperresolution earth system models in order to resolve finer scales of motion in the atmosphere. The problem of obtaining more realistic representation of terrestrial fluxes of heat and water, however, is not just a problem of moving to hyperresolution grid scales. It is much more a question of a lack of knowledge about the parameterisation of processes at whatever grid scale is being used for a wider modelling problem. Hyperresolution grid scales cannot alone solve the problem of this hyperresolution ignorance. This paper discusses these issues in more detail with specific reference to land surface parameterisations and flood inundation models. The importance of making local hyperresolution model predictions available for evaluation by local stakeholders is stressed. It is expected that this will be a major driving force for improving model performance in the future.
  •  
3.
  • Beven, Keith J., et al. (författare)
  • The uncertainty cascade in model fusion
  • 2017
  • Ingår i: Geological Society Special Publication. - 0305-8719 .- 2041-4927. ; 408:1, s. 255-266
  • Tidskriftsartikel (refereegranskat)abstract
    • There are increasing demands in assessing the impacts of change on environmental systems to couple different model components together in a cascade, the outputs from one component providing the inputs to another with or without feedbacks in the coupling. Each model component will necessarily involve some uncertainty in its specification and simulations that can be conditioned using some observational data. Taking account of this uncertainty should result in more robust decision making and may change the nature of the decision made. The difficulty in environmental decision making is in making proper estimates of uncertainties when so many of the sources of uncertainty result from lack of knowledge (epistemic uncertainties) rather than uncertainty that can be treated as random variability (aleatory uncertainty). This is particularly the case for problems that involve cascades of model components. Examples are the use of UKCP09 climate scenarios in impact studies, flood risk assessment involving models of runoff generation and their impact on hydraulic models of flood plains, and integrated catchment management involving upstream to downstream surface and subsurface routing of water quality variables. The uncertainties are such that, even for relatively simple problems, they can result in wide ranges of potential outputs. This poses the questions that will be considered in this paper: how to take account of knowledge uncertainties in cascades of model components; and how to constrain the potential uncertainties for use in making decisions. In particular we highlight the difficulties of defining statistical likelihood functions that properly reflect the non-stationary uncertainty characteristics expected of epistemic sources of uncertainty.
  •  
4.
  • Metcalfe, Peter, et al. (författare)
  • A modelling framework for evaluation of the hydrological impacts of nature-based approaches to flood risk management, with application to in-channel interventions across a 29-km(2) scale catchment in the United Kingdom
  • 2017
  • Ingår i: Hydrological Processes. - : WILEY. - 0885-6087 .- 1099-1085. ; 31:9, s. 1734-1748
  • Tidskriftsartikel (refereegranskat)abstract
    • Nature-based approaches to flood risk management are increasing in popularity. Evidence for the effectiveness at the catchment scale of such spatially distributed upstream measures is inconclusive. However, it also remains an open question whether, under certain conditions, the individual impacts of a collection of flood mitigation interventions could combine to produce a detrimental effect on runoff response. A modelling framework is presented for evaluation of the impacts of hillslope and in-channel natural flood management interventions. It couples an existing semidistributed hydrological model with a new, spatially explicit, hydraulic channel network routing model. The model is applied to assess a potential flood mitigation scheme in an agricultural catchment in North Yorkshire, United Kingdom, comprising various configurations of a single variety of in-channel feature. The hydrological model is used to generate subsurface and surface fluxes for a flood event in 2012. The network routing model is then applied to evaluate the response to the addition of up to 59 features. Additional channel and floodplain storage of approximately 70,000m(3) is seen with a reduction of around 11% in peak discharge. Although this might be sufficient to reduce flooding in moderate events, it is inadequate to prevent flooding in the double-peaked storm of the magnitude that caused damage within the catchment in 2012. Some strategies using features specific to this catchment are suggested in order to improve the attenuation that could be achieved by applying a nature-based approach.
  •  
5.
  • Metcalfe, Peter, et al. (författare)
  • A new method, with application, for analysis of the impacts on flood risk of widely distributed enhanced hillslope storage
  • 2018
  • Ingår i: Hydrology and Earth System Sciences. - 1027-5606 .- 1607-7938. ; 22:4, s. 2589-2605
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhanced hillslope storage is utilised in natural flood management in order to retain overland storm run-off and to reduce connectivity between fast surface flow pathways and the channel. Examples include excavated ponds, deepened or bunded accumulation areas, and gullies and ephemeral channels blocked with wooden barriers or debris dams.The performance of large, distributed networks of such measures is poorly understood. Extensive schemes can potentially retain large quantities of run-off, but there are indications that much of their effectiveness can be attributed to desynchronisation of sub-catchment flood waves. Inappropriately sited measures may therefore increase, rather than mitigate, flood risk. Fully distributed hydrodynamic models have been applied in limited studies but introduce significant computational complexity. The longer run times of such models also restrict their use for uncertainty estimation or evaluation of the many potential configurations and storm sequences that may influence the timings and magnitudes of flood waves.Here a simplified overland flow-routing module and semi-distributed representation of enhanced hillslope storage is developed. It is applied to the headwaters of a large rural catchment in Cumbria, UK, where the use of an extensive network of storage features is proposed as a flood mitigation strategy. The models were run within a Monte Carlo framework against data for a 2-month period of extreme flood events that caused significant damage in areas downstream. Acceptable realisations and likelihood weightings were identified using the GLUE uncertainty estimation framework. Behavioural realisations were rerun against the catchment model modified with the addition of the hillslope storage. Three different drainage rate parameters were applied across the network of hillslope storage.The study demonstrates that schemes comprising widely distributed hillslope storage can be modelled effectively within such a reduced complexity framework. It shows the importance of drainage rates from storage features while operating through a sequence of events. We discuss limitations in the simplified representation of overland flow-routing and representation and storage, and how this could be improved using experimental evidence. We suggest ways in which features could be grouped more strategically and thus improve the performance of such schemes.
  •  
6.
  • Wagener, Thorsten, et al. (författare)
  • Knowledge gaps in our perceptual model of Great Britain's hydrology
  • 2021
  • Ingår i: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 35:7
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a no lack of significant open questions in the field of hydrology. How will hydrological connectivity between freshwater bodies be altered by future human alterations to the hydrological cycle? Where does water go when it rains? Or what is the future space-time variability of flood and drought events? However, the answers to these questions will vary with location due to the specific and often poorly understood local boundary conditions and system properties that control the functional behaviour of a catchment or any other hydrologic control volume. We suggest that an open, shared and evolving perceptual model of a region's hydrology is critical to tailor our science questions, as it would be for any other study domain from the plot to the continental scale. In this opinion piece, we begin to discuss the elements of and point out some knowledge gaps in the perceptual model of the terrestrial water cycle of Great Britain. We discuss six major knowledge gaps and propose four key ways to reduce them. While the specific knowledge gaps in our perceptual model do not necessarily transfer to other places, we believe that the development of such perceptual models should be at the core of the debate for all hydrologic communities, and we encourage others to have a similar debate for their hydrologic domain.
  •  
7.
  • White, Christopher J., et al. (författare)
  • Potential applications of subseasonal-to-seasonal (S2S) predictions
  • 2017
  • Ingår i: Meteorological Applications. - : John Wiley & Sons. - 1350-4827 .- 1469-8080. ; 24:3, s. 315-325
  • Tidskriftsartikel (refereegranskat)abstract
    • While seasonal outlooks have been operational for many years, until recently the extended-range timescale referred to as subseasonal-to-seasonal (S2S) has received little attention. S2S prediction fills the gap between short-range weather prediction and long-range seasonal outlooks. Decisions in a range of sectors are made in this extended-range lead time; therefore, there is a strong demand for this new generation of forecasts. International efforts are under way to identify key sources of predictability, improve forecast skill and operationalize aspects of S2S forecasts; however, challenges remain in advancing this new frontier. If S2S predictions are to be used effectively, it is important that, along with science advances, an effort is made to develop, communicate and apply these forecasts appropriately. In this study, the emerging operational S2S forecasts are presented to the wider weather and climate applications community by undertaking the first comprehensive review of sectoral applications of S2S predictions, including public health, disaster preparedness, water management, energy and agriculture. The value of applications-relevant S2S predictions is explored, and the opportunities and challenges facing their uptake are highlighted. It is shown how social sciences can be integrated with S2S development, from communication to decision-making and valuation of forecasts, to enhance the benefits of ‘climate services’ approaches for extended-range forecasting. While S2S forecasting is at a relatively early stage of development, it is concluded that it presents a significant new window of opportunity that can be explored for application-ready capabilities that could allow many sectors the opportunity to systematically plan on a new time horizon.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy