SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lampa Jon) ;pers:(Kadetoff Diana)"

Sökning: WFRF:(Lampa Jon) > Kadetoff Diana

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Albrecht, Daniel S., et al. (författare)
  • Brain glial activation in fibromyalgia - A multi-site positron emission tomography investigation
  • 2019
  • Ingår i: Brain, behavior, and immunity. - : Elsevier BV. - 0889-1591 .- 1090-2139. ; 75, s. 72-83
  • Tidskriftsartikel (refereegranskat)abstract
    • Fibromyalgia (FM) is a poorly understood chronic condition characterized by widespread musculoskeletal pain, fatigue, and cognitive difficulties. While mounting evidence suggests a role for neuroinflammation, no study has directly provided evidence of brain glial activation in FM. In this study, we conducted a Positron Emission Tomography (PET) study using [C-11]PBR28, which binds to the translocator protein (TSPO), a protein upregulated in activated microglia and astrocytes. To enhance statistical power and generalizability, we combined datasets collected independently at two separate institutions (Massachusetts General Hospital [MGH] and Karolinska Institutet [KI]). In an attempt to disentangle the contributions of different glial cell types to FM, a smaller sample was scanned at KI with [C-11]-L-deprenyl-D2 PET, thought to primarily reflect astrocytic (but not microglial) signal. Thirty-one FM patients and 27 healthy controls (HC) were examined using [C-11]PBR28 PET. 11 FM patients and 11 HC were scanned using [C-11]-L-deprenyl-D2 PET. Standardized uptake values normalized by occipital cortex signal (SUVR) and distribution volume (V-T) were computed from the [C-11]PBR28 data. [C-11]-L-deprenyl-D2 was quantified using lambda k(3). PET imaging metrics were compared across groups, and when differing across groups, against clinical variables. Compared to HC, FM patients demonstrated widespread cortical elevations, and no decreases, in [C-11]PBR28 ITT and SUVR, most pronounced in the medial and lateral walls of the frontal and parietal lobes. No regions showed significant group differences in [C-11]-L-deprenyl-Ds signal, including those demonstrating elevated [C-11] PBR28 signal in patients (p's >= 0.53, uncorrected). The elevations in [C-11]PBR28 V-T and SUVR were correlated both spatially (i.e., were observed in overlapping regions) and, in several areas, also in terms of magnitude. In exploratory, uncorrected analyses, higher subjective ratings of fatigue in FM patients were associated with higher [C-11] PBR28 SUVR in the anterior and posterior middle cingulate cortices (p's < 0.03). SUVR was not significantly associated with any other clinical variable. Our work provides the first in vivo evidence supporting a role for glial activation in FM pathophysiology. Given that the elevations in [C-11]PBR28 signal were not also accompanied by increased [C-11]-deprenyl-D2 signal, our data suggests that microglia, but not astrocytes, may be driving the TSPO elevation in these regions. Although [C-11]-L-deprenyl-D2 signal was not found to be increased in FM patients, larger studies are needed to further assess the role of possible astrocytic contributions in FM. Overall, our data support glial modulation as a potential therapeutic strategy for FM.
  •  
2.
  • Emami Khoonsari, Payam, et al. (författare)
  • The human CSF pain proteome
  • 2019
  • Ingår i: Journal of Proteomics. - : ELSEVIER SCIENCE BV. - 1874-3919 .- 1876-7737. ; 190, s. 67-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic pain represents one of the major medical challenges in the 21st century, affecting > 1.5 billion of the world population. Overlapping and heterogenous symptoms of various chronic pain conditions complicate their diagnosis, emphasizing the need for more specific biomarkers to improve the diagnosis and understand the disease mechanisms. We have here investigated proteins found in human CSF with respect to known "pain" genes and in a cohort of patients with dysfunctional pain (fibromyalgia, FM), inflammatory pain (rheumatoid arthritis patients, RA) and non-pain controls utilized semi-quantitative proteomics using mass spectrometry (MS) to explore quantitative differences between these cohorts of patients. We found that "pain proteins" detected in CSF using MS are typically related to synaptic transmission, inflammatory responses, neuropeptide signaling- and hormonal activity. In addition, we found ten proteins potentially associated with chronic pain in FM and RA: neural cell adhesion molecule L1, complement C4-A, lysozyme C, receptor-type tyrosine-protein phosphatase zeta, apolipoprotein D, alpha-1-antichymotrypsin, granulins, calcium/calmodulin-dependent protein kinase type II subunit alpha, mast/stem cell growth factor receptor Kit, prolow-density lipoprotein receptor-related protein 1. These proteins might be of importance for understanding the mechanisms of dysfunctional/inflammatory chronic pain and also for use as potential biomarkers. Significance: Chronic pain is a common disease and it poses a large burden on worldwide health. Fibromyalgia (FM) is a heterogeneous disease of unknown etiology characterized by chronic widespread pain (CWP). The diagnosis and treatment of FM is based on the analysis of clinical assessments and no measurable biomarkers are available. Cerebrospinal fluid (CSF) has been historically considered as a rich source of biomarkers for diseases of nervous system including chronic pain. Here, we explore CSF proteome of FM patients utilizing mass spectrometry based quantitative proteomics method combined with multivariate data analysis in order to monitor the dynamics of the CSF proteome. Our findings in this exploratory study support notable presence of pain related proteins in CSF yet with specific domains including inflammatory responses, neuropeptide signaling- and hormonal activity. We have investigated molecular functions of significantly altered proteins and demonstrate presence of 176 known pain related proteins in CSF. In addition, we found ten proteins potentially associated with pain in FM and RA: neural cell adhesion molecule L1, complement C4-A, lysozyme C, receptor-type tyrosine-protein phosphatase zeta, apolipoprotein D, alpha-1-antichymotrypsin, granulins, calcium/calmodulindependent protein kinase type II subunit alpha, mast/stem cell growth factor receptor Kit, prolow-density lipoprotein receptor-related protein 1. These proteins are novel in the context of FM but are known to be involved in pain mechanisms including inflammatory response and signal transduction. These results should be of clear significance and interest for researchers and clinicians working in the field of pain utilizing human CSF and MS based proteomics.
  •  
3.
  • Kadetoff, Diana, et al. (författare)
  • Evidence of central inflammation in fibromyalgia-increased cerebrospinal fluid interleukin-8 levels.
  • 2012
  • Ingår i: Journal of Neuroimmunology. - : Elsevier BV. - 0165-5728 .- 1872-8421. ; 242:1-2, s. 33-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Activation of glia cells resulting in intrathecal elevation of cytokines and chemokines has been hypothesized in chronic pain syndromes such as fibromyalgia. To our knowledge, this is the first study assessing intrathecal concentrations of pro-inflammatory substances in fibromyalgia. We report elevated cerebrospinal fluid and serum concentrations of interleukin-8, but not interleukin-1beta, in FM patients. This profile is in accordance with FM symptoms being mediated by sympathetic activity rather than dependent on prostaglandin associated mechanisms and supports the hypothesis of glia cell activation in response to pain mechanisms.
  •  
4.
  • Kosek, Eva, et al. (författare)
  • Evidence of different mediators of central inflammation in dysfunctional and inflammatory pain--interleukin-8 in fibromyalgia and interleukin-1 β in rheumatoid arthritis.
  • 2015
  • Ingår i: Journal of Neuroimmunology. - : Elsevier BV. - 0165-5728 .- 1872-8421. ; 280, s. 49-55
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to relate central inflammation to autonomic activity (heart rate variability (HRV)) in patients with rheumatoid arthritis (RA) and fibromyalgia (FM). RA patients had reduced parasympathetic activity and FM patients had increased sympathetic activity compared to healthy controls. Comparisons between RA and FM showed higher cerebrospinal fluid (CSF) interleukin (IL)-1β inversely correlated to parasympathetic activity in RA. The FM patients had higher concentrations of CSF IL-8, IL-1Ra, IL-4 and IL-10, but none of these cytokines correlated with HRV. In conclusion, we found different profiles of central cytokines, i.e., elevated IL-1β in inflammatory pain (RA) and elevated IL-8 in dysfunctional pain (FM).
  •  
5.
  • Lampa, Jon, et al. (författare)
  • Peripheral inflammatory disease associated with centrally activated IL-1 system in humans and mice.
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:31, s. 12728-33
  • Tidskriftsartikel (refereegranskat)abstract
    • During peripheral immune activation caused by an infection or an inflammatory condition, the innate immune response signals to the brain and causes an up-regulation of central nervous system (CNS) cytokine production. Central actions of proinflammatory cytokines, in particular IL-1β, are pivotal for the induction of fever and fatigue. In the present study, the influence of peripheral chronic joint inflammatory disease in rheumatoid arthritis (RA) on CNS inflammation was investigated. Intrathecal interleukin (IL)-1β concentrations were markedly elevated in RA patients compared with controls or with patients with multiple sclerosis. Conversely, the anti-inflammatory IL-1 receptor antagonist and IL-4 were decreased in RA cerebrospinal fluid (CSF). Tumor necrosis factor and IL-6 levels in the CSF did not differ between patients and controls. Concerning IL-1β, CSF concentrations in RA patients were higher than in serum, indicating local production in the CNS, and there was a positive correlation between CSF IL-1β and fatigue assessments. Next, spinal inflammation in experimental arthritis was investigated. A marked increase of IL-1β, IL-18, and tumor necrosis factor, but not IL-6 mRNA production, in the spinal cord was observed, coinciding with increased arthritis scores in the KBxN serum transfer model. These data provide evidence that peripheral inflammation such as arthritis is associated with an immunological activation in the CNS in both humans and mice, suggesting a possible therapeutic target for centrally affecting conditions as fatigue in chronic inflammatory diseases, for which to date there are no specific treatments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy