SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lampa Jon) ;pers:(Svensson Camilla I)"

Sökning: WFRF:(Lampa Jon) > Svensson Camilla I

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Emami Khoonsari, Payam, et al. (författare)
  • The human CSF pain proteome
  • 2019
  • Ingår i: Journal of Proteomics. - : ELSEVIER SCIENCE BV. - 1874-3919 .- 1876-7737. ; 190, s. 67-76
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic pain represents one of the major medical challenges in the 21st century, affecting > 1.5 billion of the world population. Overlapping and heterogenous symptoms of various chronic pain conditions complicate their diagnosis, emphasizing the need for more specific biomarkers to improve the diagnosis and understand the disease mechanisms. We have here investigated proteins found in human CSF with respect to known "pain" genes and in a cohort of patients with dysfunctional pain (fibromyalgia, FM), inflammatory pain (rheumatoid arthritis patients, RA) and non-pain controls utilized semi-quantitative proteomics using mass spectrometry (MS) to explore quantitative differences between these cohorts of patients. We found that "pain proteins" detected in CSF using MS are typically related to synaptic transmission, inflammatory responses, neuropeptide signaling- and hormonal activity. In addition, we found ten proteins potentially associated with chronic pain in FM and RA: neural cell adhesion molecule L1, complement C4-A, lysozyme C, receptor-type tyrosine-protein phosphatase zeta, apolipoprotein D, alpha-1-antichymotrypsin, granulins, calcium/calmodulin-dependent protein kinase type II subunit alpha, mast/stem cell growth factor receptor Kit, prolow-density lipoprotein receptor-related protein 1. These proteins might be of importance for understanding the mechanisms of dysfunctional/inflammatory chronic pain and also for use as potential biomarkers. Significance: Chronic pain is a common disease and it poses a large burden on worldwide health. Fibromyalgia (FM) is a heterogeneous disease of unknown etiology characterized by chronic widespread pain (CWP). The diagnosis and treatment of FM is based on the analysis of clinical assessments and no measurable biomarkers are available. Cerebrospinal fluid (CSF) has been historically considered as a rich source of biomarkers for diseases of nervous system including chronic pain. Here, we explore CSF proteome of FM patients utilizing mass spectrometry based quantitative proteomics method combined with multivariate data analysis in order to monitor the dynamics of the CSF proteome. Our findings in this exploratory study support notable presence of pain related proteins in CSF yet with specific domains including inflammatory responses, neuropeptide signaling- and hormonal activity. We have investigated molecular functions of significantly altered proteins and demonstrate presence of 176 known pain related proteins in CSF. In addition, we found ten proteins potentially associated with pain in FM and RA: neural cell adhesion molecule L1, complement C4-A, lysozyme C, receptor-type tyrosine-protein phosphatase zeta, apolipoprotein D, alpha-1-antichymotrypsin, granulins, calcium/calmodulindependent protein kinase type II subunit alpha, mast/stem cell growth factor receptor Kit, prolow-density lipoprotein receptor-related protein 1. These proteins are novel in the context of FM but are known to be involved in pain mechanisms including inflammatory response and signal transduction. These results should be of clear significance and interest for researchers and clinicians working in the field of pain utilizing human CSF and MS based proteomics.
  •  
2.
  • Lampa, Jon, et al. (författare)
  • Peripheral inflammatory disease associated with centrally activated IL-1 system in humans and mice.
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:31, s. 12728-33
  • Tidskriftsartikel (refereegranskat)abstract
    • During peripheral immune activation caused by an infection or an inflammatory condition, the innate immune response signals to the brain and causes an up-regulation of central nervous system (CNS) cytokine production. Central actions of proinflammatory cytokines, in particular IL-1β, are pivotal for the induction of fever and fatigue. In the present study, the influence of peripheral chronic joint inflammatory disease in rheumatoid arthritis (RA) on CNS inflammation was investigated. Intrathecal interleukin (IL)-1β concentrations were markedly elevated in RA patients compared with controls or with patients with multiple sclerosis. Conversely, the anti-inflammatory IL-1 receptor antagonist and IL-4 were decreased in RA cerebrospinal fluid (CSF). Tumor necrosis factor and IL-6 levels in the CSF did not differ between patients and controls. Concerning IL-1β, CSF concentrations in RA patients were higher than in serum, indicating local production in the CNS, and there was a positive correlation between CSF IL-1β and fatigue assessments. Next, spinal inflammation in experimental arthritis was investigated. A marked increase of IL-1β, IL-18, and tumor necrosis factor, but not IL-6 mRNA production, in the spinal cord was observed, coinciding with increased arthritis scores in the KBxN serum transfer model. These data provide evidence that peripheral inflammation such as arthritis is associated with an immunological activation in the CNS in both humans and mice, suggesting a possible therapeutic target for centrally affecting conditions as fatigue in chronic inflammatory diseases, for which to date there are no specific treatments.
  •  
3.
  • Lund, Harald, et al. (författare)
  • CD163+ macrophages monitor enhanced permeability at the blood-dorsal root ganglion barrier
  • 2024
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 221:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163(+) macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy