SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lan Q) ;lar1:(kth)"

Sökning: WFRF:(Lan Q) > Kungliga Tekniska Högskolan

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Aad, G., et al. (författare)
  • 2015
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Aad, G., et al. (författare)
  • 2014
  • Ingår i: Journal of High Energy Physics. - 1029-8479 .- 1126-6708. ; :9
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  •  
5.
  • Aad, G., et al. (författare)
  • 2015
  • Ingår i: Journal of High Energy Physics. - 1029-8479 .- 1126-6708. ; :1
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  • Aad, G., et al. (författare)
  • 2014
  • Ingår i: Journal of High Energy Physics. - 1029-8479 .- 1126-6708. ; :9
  • Tidskriftsartikel (refereegranskat)
  •  
7.
  • Maksimovic, M., et al. (författare)
  • First observations and performance of the RPW instrument on board the Solar Orbiter mission
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is designed to measure in situ magnetic and electric fields and waves from the continuum up to several hundred kHz. The RPW also observes solar and heliospheric radio emissions up to 16 MHz. It was switched on and its antennae were successfully deployed two days after the launch of Solar Orbiter on February 10, 2020. Since then, the instrument has acquired enough data to make it possible to assess its performance and the electromagnetic disturbances it experiences. In this article, we assess its scientific performance and present the first RPW observations. In particular, we focus on a statistical analysis of the first observations of interplanetary dust by the instrument's Thermal Noise Receiver. We also review the electro-magnetic disturbances that RPW suffers, especially those which potential users of the instrument data should be aware of before starting their research work.
  •  
8.
  • Maksimovic, M., et al. (författare)
  • The Solar Orbiter Radio and Plasma Waves (RPW) instrument
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 642
  • Tidskriftsartikel (refereegranskat)abstract
    • The Radio and Plasma Waves (RPW) instrument on the ESA Solar Orbiter mission is described in this paper. This instrument is designed to measure in-situ magnetic and electric fields and waves from the continuous to a few hundreds of kHz. RPW will also observe solar radio emissions up to 16 MHz. The RPW instrument is of primary importance to the Solar Orbiter mission and science requirements since it is essential to answer three of the four mission overarching science objectives. In addition RPW will exchange on-board data with the other in-situ instruments in order to process algorithms for interplanetary shocks and type III langmuir waves detections.
  •  
9.
  • Yang, Chen, et al. (författare)
  • Big Data Driven Edge-Cloud Collaboration Architecture for Cloud Manufacturing : A Software Defined Perspective
  • 2020
  • Ingår i: IEEE Access. - : IEEE. - 2169-3536. ; 8, s. 45938-45950
  • Tidskriftsartikel (refereegranskat)abstract
    • In the practice of cloud manufacturing, there still exist some major challenges, including: 1) cloud based big data analytics and decision-making cannot meet the requirements of many latency-sensitive applications on shop floors; 2) existing manufacturing systems lack enough reconfigurability, openness and evolvability to deal with shop-floor disturbances and market changes; and 3) big data from shop-floors and the Internet has not been effectively utilized to guide the optimization and upgrade of manufacturing systems. This paper proposes an open evolutionary architecture of the intelligent cloud manufacturing system with collaborative edge and cloud processing. Hierarchical gateways connecting and managing shop-floor things at the "edge" side are introduced to support latency-sensitive applications for real-time responses. Big data processed both at the gateways and in the cloud will be used to guide continuous improvement and evolution of edge-cloud systems for better performance. As software tools are becoming dominant as the "brain" of manufacturing control and decision-making, this paper also proposes a new mode - "AI-Mfg-Ops" (AI enabled Manufacturing Operations) with a supporting software defined framework, which can promote fast operation and upgrading of cloud manufacturing systems with smart monitoring-analysis-planning-execution in a closed loop. This research can contribute to the rapid response and efficient operation of cloud manufacturing systems.
  •  
10.
  • Yang, C., et al. (författare)
  • Cloud-edge-device Collaboration Mechanisms of Cloud Manufacturing for Customized and Personalized Products
  • 2022
  • Ingår i: 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2022. - : Institute of Electrical and Electronics Engineers (IEEE). ; , s. 1517-1522
  • Konferensbidrag (refereegranskat)abstract
    • With the increasingly developed industry and more comprehensive product offerings, customized and personalized products (CPPs) gradually become a main business model of many enterprises. However, the characteristics of CPPs, such as large differences in product modules and short product delivery cycles, put forward very high demands for the intelligence, flexibility and real-time performance of cloud manufacturing (CMfg). To satisfy the above typical demands, a cloud-edge-device collaborative framework of CMfg is proposed to support distributed data processing and fast decision-making. In the context of Cloud-edge-device collaboration, the vertically and horizontally distributed deployment and update mechanisms of deep learning models (DLMs) are brought forward and analyzed in detail to provide rapid response and high-performance decision-making services for CPPs. In addition, related key technologies are presented to provide references for the technical research direction. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy