SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Landén M) ;pers:(Sellgren C)"

Sökning: WFRF:(Landén M) > Sellgren C

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sellgren, C. M., et al. (författare)
  • GRK3 deficiency elicits brain immune activation and psychosis
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26, s. 6820-6832
  • Tidskriftsartikel (refereegranskat)abstract
    • The G protein-coupled receptor kinase (GRK) family member protein GRK3 has been linked to the pathophysiology of schizophrenia and bipolar disorder. Expression, as well as protein levels, of GRK3 are reduced in post-mortem prefrontal cortex of schizophrenia subjects. Here, we investigate functional behavior and neurotransmission related to immune activation and psychosis using mice lacking functional Grk3 and utilizing a variety of methods, including behavioral, biochemical, electrophysiological, molecular, and imaging methods. Compared to wildtype controls, the Grk3(-/-) mice show a number of aberrations linked to psychosis, including elevated brain levels of IL-1 beta, increased turnover of kynurenic acid (KYNA), hyper-responsiveness to D-amphetamine, elevated spontaneous firing of midbrain dopamine neurons, and disruption in prepulse inhibition. Analyzing human genetic data, we observe a link between psychotic features in bipolar disorder, decreased GRK expression, and increased concentration of CSF KYNA. Taken together, our data suggest that Grk3(-/-) mice show face and construct validity relating to the psychosis phenotype with glial activation and would be suitable for translational studies of novel immunomodulatory agents in psychotic disorders.
  •  
2.
  • Sellgren, C. M., et al. (författare)
  • A genome-wide association study of kynurenic acid in cerebrospinal fluid: implications for psychosis and cognitive impairment in bipolar disorder
  • 2016
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 21:10, s. 1342-1350
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated cerebrospinal fluid (CSF) levels of the glia-derived N-methyl-D-aspartic acid receptor antagonist kynurenic acid (KYNA) have consistently been implicated in schizophrenia and bipolar disorder. Here, we conducted a genome-wide association study based on CSF KYNA in bipolar disorder and found support for an association with a common variant within 1p21.3. After replication in an independent cohort, we linked this genetic variant-associated with reduced SNX7 expression-to positive psychotic symptoms and executive function deficits in bipolar disorder. A series of post-mortem brain tissue and in vitro experiments suggested SNX7 downregulation to result in a caspase-8-driven activation of interleukin-1 beta and a subsequent induction of the brain kynurenine pathway. The current study demonstrates the potential of using biomarkers in genetic studies of psychiatric disorders, and may help to identify novel drug targets in bipolar disorder.
  •  
3.
  • Schwieler, L., et al. (författare)
  • Electroconvulsive therapy suppresses the neurotoxic branch of the kynurenine pathway in treatment-resistant depressed patients
  • 2016
  • Ingår i: Journal of Neuroinflammation. - : Springer Science and Business Media LLC. - 1742-2094. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Neuroinflammation is increasingly recognized as contributing to the pathogenesis of depression. Key inflammatory markers as well as kynurenic acid (KYNA) and quinolinic acid (QUIN), both tryptophan metabolites, have been associated with depressive symptoms and suicidality. The aim of the present study is to investigate the peripheral concentration of cytokines and tryptophan and kynurenine metabolites in patients with unipolar treatment-resistant depression before and after electroconvulsive therapy (ECT), the most effective treatment for depression. Methods: Cytokines in plasma from patients with major depressive disorder (MDD; n = 19) and healthy volunteers (n = 14) were analyzed with electrochemiluminescence detection. Tryptophan and kynurenine metabolites were detected with high-performance liquid chromatography (HPLC) and LC/MS. KYNA was analyzed in a second healthy control cohort (n = 22). Results: Patients with MDD had increased plasma levels of interleukin (IL)-6 compared to healthy volunteers (P < 0.05). We also found an altered kynurenine metabolism in these patients displayed by decreased plasma levels of KYNA (P < 0.0001) as well as a significantly increased QUIN/KYNA ratio (P < 0.001). Plasma levels of tryptophan, kynurenine, and QUIN did not differ between patients and controls. Treatment with ECT was associated with a significant decrease in the plasma levels of tryptophan (P < 0.05), kynurenine (P < 0.01), and QUIN (P < 0.001), whereas plasma levels of KYNA did not change. The QUIN/KYNA ratio was found to significantly decrease in ECT-treated patients (P < 0.05). There was a significant inverse correlation between symptom severity and kynurenine levels at baseline (r = -0.67, P = 0.002). Conclusions: This study confirms an imbalanced kynurenine pathway in MDD supporting the hypothesis of a netstimulation of N-methyl-D-aspartic acid (NMDA) receptors in the disorder. Treatment with ECT profoundly decreased QUIN, an NMDA-receptor agonist previously suggested to be implicated in the pathogenesis of depression, an effect that might have bearing for the good clinical outcome of ECT.
  •  
4.
  • Abe, C., et al. (författare)
  • Genetic risk for bipolar disorder and schizophrenia predicts structure and function of the ventromedial prefrontal cortex
  • 2021
  • Ingår i: Journal of Psychiatry & Neuroscience. - : CMA Joule Inc.. - 1180-4882 .- 1488-2434. ; 46:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Bipolar disorder is highly heritable and polygenic. The polygenic risk for bipolar disorder overlaps with that of schizophrenia, and polygenic scores are normally distributed in the population. Bipolar disorder has been associated with structural brain abnormalities, but it is unknown how these are linked to genetic risk factors for psychotic disorders. Methods: We tested whether polygenic risk scores for bipolar disorder and schizophrenia predict structural brain alterations in 98 patients with bipolar disorder and 81 healthy controls. We derived brain cortical thickness, surface area and volume from structural MRI scans. In post-hoc analyses, we correlated polygenic risk with functional hub strength, derived from resting-state functional MRI and brain connectomics. Results: Higher polygenic risk scores for both bipolar disorder and schizophrenia were associated with a thinner ventromedial prefrontal cortex (vmPFC). We found these associations in the combined group, and separately in patients and drug-naive controls. Polygenic risk for bipolar disorder was correlated with the functional hub strength of the vmPFC within the default mode network. Limitations: Polygenic risk is a cumulative measure of genomic burden. Detailed genetic mechanisms underlying brain alterations and their cognitive consequences still need to be determined. Conclusion: Our multimodal neuroimaging study linked genomic burden and brain endophenotype by demonstrating an association between polygenic risk scores for bipolar disorder and schizophrenia and the structure and function of the vmPFC. Our findings suggest that genetic factors might confer risk for psychotic disorders by influencing the integrity of the vmPFC, a brain region involved in self-referential processes and emotional regulation. Our study may also provide an imaging-genetics vulnerability marker that can be used to help identify individuals at risk for developing bipolar disorder.
  •  
5.
  •  
6.
  • Cremaschi, Laura, et al. (författare)
  • Prevalences of autoimmune diseases in schizophrenia, bipolar I and II disorder, and controls
  • 2017
  • Ingår i: Psychiatry Research. - : Elsevier BV. - 0165-1781 .- 1872-7123. ; 258, s. 9-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies on the relationship between autoimmune diseases, schizophrenia, and bipolar disorder are mainly based on hospital discharge registers with insufficient coverage of outpatient data. Furthermore, data is scant on the prevalence of autoimmune diseases in bipolar subgroups. Here we estimate the self-reported prevalences of autoimmune diseases in schizophrenia, bipolar disorder type I and II, and controls. Lifetime prevalence of autoimmune diseases was assessed through a structured interview in a sample of 9076 patients (schizophrenia N = 5278, bipolar disorder type I N = 1952, type II N = 1846) and 6485 controls. Comparative analyses were performed using logistic regressions. The prevalence of diabetes type 1 did not differ between groups. Hyperthyroidism, hypothyroidism regardless of lithium effects, rheumatoid arthritis, and polymyalgia rheumatica were most common in bipolar disorder. Systemic lupus erythematosus was less common in bipolar disorder than in the other groups. The rate of autoimmune diseases did not differ significantly between bipolar subgroups. We conclude that prevalences of autoimmune diseases show clear differences between schizophrenia and bipolar disorder, but not between the bipolar subgroups. © 2017 Elsevier B.V.
  •  
7.
  • Gracias, J., et al. (författare)
  • Cerebrospinal fluid concentration of complement component 4A is increased in first episode schizophrenia
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia risk has been associated with the complement component 4 (C4) genes. Here the authors show that C4A is elevated in individuals with schizophrenia. Postsynaptic density is reduced in schizophrenia, and risk variants increasing complement component 4A (C4A) gene expression are linked to excessive synapse elimination. In two independent cohorts, we show that cerebrospinal fluid (CSF) C4A concentration is elevated in patients with first-episode psychosis (FEP) who develop schizophrenia (FEP-SCZ: median 0.41 fmol/ul [CI = 0.34-0.45], FEP-non-SCZ: median 0.29 fmol/ul [CI = 0.22-0.35], healthy controls: median 0.28 [CI = 0.24-0.33]). We show that the CSF elevation of C4A in FEP-SCZ exceeds what can be expected from genetic risk variance in the C4 locus, and in patient-derived cellular models we identify a mechanism dependent on the disease-associated cytokines interleukin (IL)-1beta and IL-6 to selectively increase neuronal C4A mRNA expression. In patient-derived CSF, we confirm that IL-1beta correlates with C4A controlled for genetically predicted C4A RNA expression (r = 0.39; CI: 0.01-0.68). These results suggest a role of C4A in early schizophrenia pathophysiology.
  •  
8.
  •  
9.
  • Lavebratt, C., et al. (författare)
  • The KMO allele encoding Arg(452) is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression
  • 2014
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 19:3, s. 334-341
  • Tidskriftsartikel (refereegranskat)abstract
    • The kynurenine pathway metabolite kynurenic acid (KYNA), modulating glutamatergic and cholinergic neurotransmission, is increased in cerebrospinal fluid (CSF) of patients with schizophrenia or bipolar disorder type 1 with psychotic features. KYNA production is critically dependent on kynurenine 3-monooxygenase (KMO). KMO mRNA levels and activity in prefrontal cortex (PFC) are reduced in schizophrenia. We hypothesized that KMO expression in PFC would be reduced in bipolar disorder with psychotic features and that a functional genetic variant of KMO would associate with this disease, CSF KYNA level and KMO expression. KMO mRNA levels were reduced in PFC of bipolar disorder patients with lifetime psychotic features (P = 0.005, n = 19) or schizophrenia (P = 0.02, n = 36) compared with nonpsychotic patients and controls. KMO genetic association to psychotic features in bipolar disorder type 1 was studied in 493 patients and 1044 controls from Sweden. The KMO Arg(452) allele was associated with psychotic features during manic episodes (P = 0.003). KMO Arg(452) was studied for association to CSF KYNA levels in an independent sample of 55 Swedish patients, and to KMO expression in 717 lymphoblastoid cell lines and 138 hippocampal biopsies. KMO Arg(452) associated with increased levels of CSF KYNA (P = 0.03) and reduced lymphoblastoid and hippocampal KMO expression (P <= 0.05). Thus, findings from five independent cohorts suggest that genetic variation in KMO influences the risk for psychotic features in mania of bipolar disorder patients. This provides a possible mechanism for the previous findings of elevated CSF KYNA levels in those bipolar patients with lifetime psychotic features and positive association between KYNA levels and number of manic episodes.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy