SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Landén Mikael) ;pers:(Sellgren Carl)"

Sökning: WFRF:(Landén Mikael) > Sellgren Carl

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abé, Christoph, et al. (författare)
  • Cortical thickness, volume and surface area in patients with bipolar disorder types I and II.
  • 2016
  • Ingår i: Journal of psychiatry & neuroscience : JPN. - : CMA Joule Inc.. - 1488-2434 .- 1180-4882. ; 41:4, s. 240-50
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is a common chronic psychiatric disorder mainly characterized by episodes of mania, hypomania and depression. The disorder is associated with cognitive impairments and structural brain abnormalities, such as lower cortical volumes in primarily frontal brain regions than healthy controls. Although bipolar disorder types I (BDI) and II (BDII) exhibit different symptoms and severity, previous studies have focused on BDI. Furthermore, the most frequently investigated measure in this population is cortical volume. The aim of our study was to investigate abnormalities in patients with BDI and BDII by simultaneously analyzing cortical volume, thickness and surface area, which yields more information about disease- and symptom-related neurobiology.
  •  
2.
  • Abé, Christoph, et al. (författare)
  • Longitudinal Cortical Thickness Changes in Bipolar Disorder and the Relationship to Genetic Risk, Mania, and Lithium Use.
  • 2020
  • Ingår i: Biological psychiatry. - : Elsevier BV. - 1873-2402 .- 0006-3223. ; 87:3, s. 271-281
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is a highly heritable psychiatric disorder characterized by episodes of manic and depressed mood states and associated with cortical brain abnormalities. Although the course of BD is often progressive, longitudinal brain imaging studies are scarce. It remains unknown whether brain abnormalities are static traits of BD or result from pathological changes over time. Moreover, the genetic effect on implicated brain regions remains unknown.Patients with BD and healthy control (HC) subjects underwent structural magnetic resonance imaging at baseline (123 patients, 83 HC subjects) and after 6 years (90 patients, 61 HC subjects). Cortical thickness maps were generated using FreeSurfer. Using linear mixed effects models, we compared longitudinal changes in cortical thickness between patients with BD and HC subjects across the whole brain. We related our findings to genetic risk for BD and tested for effects of demographic and clinical variables.Patients showed abnormal cortical thinning of temporal cortices and thickness increases in visual/somatosensory brain areas. Thickness increases were related to genetic risk and lithium use. Patients who experienced hypomanic or manic episodes between time points showed abnormal thinning in inferior frontal cortices. Cortical changes did not differ between diagnostic BD subtypes I and II.In the largest longitudinal BD study to date, we detected abnormal cortical changes with high anatomical resolution. We delineated regional effects of clinical symptoms, genetic factors, and medication that may explain progressive brain changes in BD. Our study yields important insights into disease mechanisms and suggests that neuroprogression plays a role in BD.
  •  
3.
  • Abé, Christoph, et al. (författare)
  • Manic episodes are related to changes in frontal cortex: a longitudinal neuroimaging study of bipolar disorder 1.
  • 2015
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 138:Pt 11, s. 3440-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Higher numbers of manic episodes in bipolar patients has, in cross-sectional studies, been associated with less grey matter volume in prefrontal brain areas. Longitudinal studies are needed to determine if manic episodes set off progressive cortical changes, or if the association is better explained by premorbid brain conditions that increase risk for mania. We followed patients with bipolar disorder type 1 for 6 years. Structural brain magnetic resonance imaging scans were performed at baseline and follow-up. We compared patients who had at least one manic episode between baseline and follow-up (Mania group, n = 13) with those who had no manic episodes (No-Mania group, n = 18). We used measures of cortical volume, thickness, and area to assess grey matter changes between baseline and follow-up. We found significantly decreased frontal cortical volume (dorsolateral prefrontal and inferior frontal cortex) in the Mania group, but no volume changes in the No-Mania group. Our results indicate that volume decrease in frontal brain regions can be attributed to the incidence of manic episodes.
  •  
4.
  • Ekman, Carl Johan, et al. (författare)
  • A History of Psychosis in Bipolar Disorder is Associated With Gray Matter Volume Reduction.
  • 2017
  • Ingår i: Schizophrenia bulletin. - : Oxford University Press (OUP). - 1745-1701 .- 0586-7614. ; 43:1, s. 99-107
  • Tidskriftsartikel (refereegranskat)abstract
    • Psychotic symptoms are prevalent in schizophrenia, bipolar disorder, and other psychiatric and neurological disorders, yet the neurobiological underpinnings of psychosis remain obscure. In the last decade, a large number of magnetic resonance imaging studies have shown differences in local gray matter volume between patients with different psychiatric syndromes and healthy controls. Few studies have focused on the symptoms, which these syndromes are constituted of. Here, we test the association between psychosis and gray matter volume by using a sample of 167 subjects with bipolar disorder, with and without a history of psychosis, and 102 healthy controls. Magnetic resonance images were analyzed on group level using a voxel-wise mass univariate analysis (Voxel-Based Morphometry). We found that patients with a history of psychosis had smaller gray matter volume in left fusiform gyrus, the right rostral dorsolateral prefrontal cortex, and the left inferior frontal gyrus compared with patients without psychosis and with healthy controls. There was no volume difference in these areas between the no-psychosis group and healthy controls. These areas have previously been structurally and functionally coupled to delusions and hallucinations. Our finding adds further evidence to the probability of these regions as key areas in the development of psychotic symptoms.
  •  
5.
  • Hörbeck, Elin, 1984, et al. (författare)
  • Dissecting the impact of complement component 4A in bipolar disorder.
  • 2023
  • Ingår i: Brain, behavior, and immunity. - 1090-2139. ; 116, s. 150-159
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic overlap between schizophrenia (SZ) and bipolar disorder (BD) is substantial. Polygenic risk scores have been shown to dissect different symptom dimensions within and across these two disorders. Here, we focused on the most strongly associated SZ risk locus located in the extended MHC region, which is largely explained by copy numbers of the gene coding for complement component 4A (C4A). First, we utilized existing brain tissue collections (N=1,202 samples) and observed no altered C4A expression in BD samples. The generated C4A seeded co-expression networks displayed no genetic enrichment for BD. To study if genetically predicted C4A expression discriminates between subphenotypes of BD, we applied C4A expression scores to symptom dimensions in a total of 4,739 BD cases with deep phenotypic data. We identified a significant association between C4A expression and psychotic mood episodes in BD type 1 (BDI). No significant association was observed between C4A expression and the occurrence of non-affective psychotic episodes in BDI, the psychosis dimensions in the total BD sample, or any other subphenotype of BD. Overall, these results points to a distinct role of C4A in BD that is restricted to vulnerability for developing psychotic symptoms during mood episodes in BDI.
  •  
6.
  • Isgren, Anniella, et al. (författare)
  • Increased cerebrospinal fluid interleukin-8 in bipolar disorder patients associated with lithium and antipsychotic treatment.
  • 2015
  • Ingår i: Brain, behavior, and immunity. - : Elsevier BV. - 1090-2139 .- 0889-1591. ; 43, s. 198-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation has been linked to the pathophysiology of bipolar disorder based on studies of inflammation markers, such as cytokine concentrations, in plasma and serum samples from cases and controls. However, peripheral measurements of cytokines do not readily translate to immunological activity in the brain. The aim of the present study was to study brain immune and inflammatory activity. To this end, we analyzed cytokines in cerebrospinal fluid from 121 euthymic bipolar disorder patients and 71 age and sex matched control subjects. Concentrations of 11 different cytokines were determined using immunoassays. Cerebrospinal fluid IL-8 concentrations were significantly higher in patients as compared to controls. The other cytokines measured were only detectable in part of the sample. IL-8 concentrations were positively associated to lithium- and antipsychotic treatment. The findings might reflect immune aberrations in bipolar disorder, or be due to the effects of medication.
  •  
7.
  • Isgren, Anniella, et al. (författare)
  • Markers of neuroinflammation and neuronal injury in bipolar disorder: Relation to prospective clinical outcomes.
  • 2017
  • Ingår i: Brain, behavior, and immunity. - : Elsevier BV. - 1090-2139 .- 0889-1591. ; 65, s. 195-201
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroimmune mechanisms have been linked to the pathophysiology of bipolar disorder based on studies of biomarkers in plasma, cerebrospinal fluid (CSF), and postmortem brain tissue. There are, however, no longitudinal studies investigating if CSF markers of neuroinflammation and neuronal injury predict clinical outcomes in patients with bipolar disorder. We have in previous studies found higher CSF concentrations of interleukin-8 (IL-8), monocyte chemoattractant protein 1 (MCP-1/CCL-2), chitinase-3-like protein 1 (CHI3L1/YKL-40), and neurofilament light chain (NF-L) in euthymic patients with bipolar disorder compared with controls. Here, we investigated the relationship of these CSF markers of neuroinflammation and neuronal injury with clinical outcomes in a prospective study. 77 patients with CSF analyzed at baseline were followed for 6-7years. Associations of baseline biomarkers with clinical outcomes (manic/hypomanic and depressive episodes, suicide attempts, psychotic symptoms, inpatient care, GAF score change) were investigated. Baseline MCP-1 concentrations were positively associated with manic/hypomanic episodes and inpatient care during follow-up. YKL-40 concentrations were negatively associated with manic/hypomanic episodes and with occurrence of psychotic symptoms. The prospective negative association between YKL-40 and manic/hypomanic episodes survived multiple testing correction. Concentrations of IL-8 and NF-L were not associated with clinical outcomes. High concentrations of these selected CSF markers of neuroinflammation and neuronal injury at baseline were not consistently associated with poor clinical outcomes in this prospective study. The assessed proteins may be involved in adaptive immune processes or reflect a state of vulnerability for bipolar disorder rather than being of predictive value for disease progression.
  •  
8.
  • Jakobsson, Joel, et al. (författare)
  • CACNA1C polymorphism and altered phosphorylation of tau in bipolar disorder.
  • 2016
  • Ingår i: The British journal of psychiatry : the journal of mental science. - : Royal College of Psychiatrists. - 1472-1465. ; 208:2, s. 195-196
  • Tidskriftsartikel (refereegranskat)abstract
    • Several genome-wide association studies and case-control studies have associated the single nucleotide polymorphism (SNP) rs1006737, situated in CACNA1C encoding the alpha 1C subunit of the L-type voltage-gated calcium channel, with bipolar disorder and other psychiatric disorders. However, the causal pathway linking genetic variants in CACNA1C with increased risk for developing brain disorders remains unclear. Here, we explored the association between the rs1006737 SNP and cerebrospinal fluid (CSF) markers. We found a significant association between the risk allele in rs1006737 and a decreased CSF hyperphosphorylated tau/total tau ratio in patients with bipolar disorder, thus linking variation in the CACNA1C gene to a neurochemical marker of neuroaxonal plasticity in those with this disorder.
  •  
9.
  • Jakobsson, Joel, et al. (författare)
  • Decreased cerebrospinal fluid secretogranin II concentrations in severe forms of bipolar disorder.
  • 2013
  • Ingår i: Journal of psychiatry & neuroscience : JPN. - : CMA Joule Inc.. - 1488-2434 .- 1180-4882. ; 38:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Bipolar disorder is a common psychiatric mood disorder that is defined by recurrent episodes of abnormally elevated mood and depression. Progressive structural brain changes in individuals with bipolar disorder have been suggested to be associated with defects in the secretion of neurotrophic factors. We sought to assess how the regulated secretory pathway in the brain is affected in patients with bipolar disorder by measuring chromogranin B and secretogranin II, which are 2 cerebrospinal fluid (CSF) biological markers for this process. Methods: We measured the concentrations of chromogranin B (peptide 439-451) and secretogranin II (peptide 154-165) in the CSF of patients with well-defined bipolar disorder and healthy controls. The lifetime severity of bipolar disorder was rated using the Clinical Global Impression (CGI) scale. Results: We included 126 patients with bipolar disorder and 71 healthy controls in our analysis. Concentrations of secretogranin II were significantly lower in patients with bipolar disorder type I than in healthy controls. The reduction was most pronounced in patients with high CGI scores (i.e., severe disease). Limitations: The cross-sectional design of the current study limits the ability to pinpoint the causalities behind the observed associations. Conclusion: This study shows that the CSF marker secretogranin II has the potential to act as a biological marker for severe forms of bipolar disorder. Our findings indicate that patients with bipolar disorder possess defects in the regulatory secretory pathway, which may be of relevance to the progressive structural brain changes seen in those with severe forms of the disease.
  •  
10.
  • Jakobsson, Joel, et al. (författare)
  • Elevated Concentrations of Neurofilament Light Chain in The Cerebrospinal Fluid of Bipolar Disorder Patients.
  • 2014
  • Ingår i: Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. - : Springer Science and Business Media LLC. - 1740-634X. ; 39, s. 2349-2356
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is characterized by mood swings between manic and depressive states. The etiology and pathogenesis of BD is unclear, but many of the affected cognitive domains, as well as neuroanatomical abnormalities, resemble symptoms and signs of small vessel disease. In small vessel disease, cerebrospinal fluid (CSF) markers reflecting damages in different cell types and subcellular structures of the brain have been established. Hence, we hypothesized that CSF markers related to small vessel disease may also be applicable as biomarkers for bipolar disorder. To investigate this hypothesis, we sampled CSF from 133 patients with bipolar disorder and 86 healthy controls. The concentrations of neurofilament light chain (NF-L), myelin basic protein (MBP), S100B, and heart-fatty acid binding protein (H-FABP) were measured in CSF and analyzed in relation to diagnosis, clinical characteristics, and ongoing medications. Hereby we found an elevation of the marker of subcortical axonal damage, NF-L, in bipolar subjects. We also identified positive associations between NF-L and treatment with atypical antipsychotics, MBP and lamotrigine, and H-FABP and lithium. These findings indicate axonal damage as an underlying neuropathological component of bipolar disorder, though the clinical value of elevated NF-L remains to be validated in follow-up studies. The associations between current medications and CSF brain injury markers might aid in the understanding of both therapeutic and adverse effects of these drugs.Neuropsychopharmacology accepted article peview online, 03 April 2014; doi:10.1038/npp.2014.81.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy