SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Landberg Göran) ;pers:(Kumar Rakesh)"

Sökning: WFRF:(Landberg Göran) > Kumar Rakesh

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gururaj, Anupama E, et al. (författare)
  • Breast cancer-amplified sequence 3, a target of metastasis-associated protein 1, contributes to tamoxifen resistance in premenopausal patients with breast cancer
  • 2006
  • Ingår i: Cell Cycle. - 1551-4005. ; 5:13, s. 1407-1410
  • Tidskriftsartikel (refereegranskat)abstract
    • Lysine acetylation occurs in many protein targets, including core histones, transcription factors, and other proteins. Metastasis-associated protein 1 (MTA1) is implicated in the progression and metastasis of various epithelial tumors. Because MTA1 functions as a transcriptional coregulator, much of its role in cancer promoting processes are likely to involve its ability to regulate the transcription of downstream target genes that encode effector proteins. We recently showed that MTA1 could be post-translationally modified by acetylation, which modulates its function as a coregulator molecule. We also defined a chromatin target of MTA1, namely, breast cancer-amplified sequence 3 (BCAS3), in the context of which MTA1 behaves as a transcriptional coactivator in breast cancer cells. Because the phenotypic effect of BCAS3 overexpression in tumors has not been defined, we investigated the consequence of increased expression of BCAS3 in human breast tumors. Here, we report that BCAS3 overexpression in hormone receptor-positive premenopausal breast cancer seemed to be associated with impaired responses to tamoxifen. Our findings have implications for endocrine therapy.
  •  
2.
  • Kumar, Rakesh, et al. (författare)
  • Extranuclear Coactivator Signaling Confers Insensitivity to Tamoxifen.
  • 2009
  • Ingår i: Clinical Cancer Research. - 1078-0432. ; 15, s. 4123-4130
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Tamoxifen is one of many standard therapeutic options currently available for estrogen receptor-alpha-positive breast cancer patients. Emerging data have suggested that levels of estrogen receptor coregulatory proteins play a significant role in acquiring resistance to antiestrogen action. It has been suggested that high levels of estrogen receptor coactivators and its mislocalization may enhance the estrogen agonist activity of tamoxifen and contribute to tamoxifen resistance.EXPERIMENTAL DESIGN: In an effort to understand the impact of nongenomic signaling and its contribution to hormone resistance in a whole-animal setting, we generated a transgenic mouse expressing a cytoplasmic version of proline-, glutamic acid-, and leucine-rich protein-1 (PELP1) mutant defective in its nuclear translocation (PELP1-cyto) and implanted these mice with tamoxifen pellets to assess its responsiveness.RESULTS: We show that mammary glands from these mice developed widespread hyperplasia with increased cell proliferation and enhanced activation of mitogen-activated protein kinase and AKT as early as 12 weeks of age. Treatment with tamoxifen did not inhibit this hyperplasia; instead, such treatment exaggerated hyperplasia with an enhanced degree of alteration, indicative of hypersensitivity to tamoxifen. Analysis of molecular markers in the transgenic mammary glands from the tamoxifen-treated transgenic mice showed higher levels of proliferation markers proliferating cell nuclear antigen and activated mitogen-activated protein kinase than in untreated PELP1-cyto cell-derived mice. We also found that nude mice with MCF-7/PELP1-cyto cell-derived tumor xenografts did not respond to tamoxifen. Using immunohistochemical analysis, we found that 43% of human breast tumor samples had high levels of cytoplasmic PELP1, which shows a positive correlation between tumor grade and proliferation. Patients whose tumors had high levels of cytoplasmic PELP1 exhibited a tendency to respond poorly to tamoxifen compared with patients whose tumors had low levels of cytoplasmic PELP1.CONCLUSIONS: These findings suggest that PELP1 localization could be used as a determinant of hormone sensitivity or vulnerability. The establishment of the PELP1-cyto transgenic mouse model is expected to facilitate the development of preclinical approaches for effective intervention of breast tumors using cytoplasmic coregulators and active nongenomic signaling.
  •  
3.
  • Ohshiro, Kazufumi, et al. (författare)
  • Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator.
  • 2010
  • Ingår i: EMBO reports. - : EMBO. - 1469-3178 .- 1469-221X. ; 11:9, s. 691-7
  • Tidskriftsartikel (refereegranskat)abstract
    • High expression of metastasis-associated protein 1 co-regulator (MTA1), a component of the nuclear remodelling and histone deacetylase complex, has been associated with human tumours. However, the precise role of MTA1 in tumorigenesis remains unknown. In this study, we show that induced levels of MTA1 are sufficient to transform Rat1 fibroblasts and that the transforming potential of MTA1 is dependent on its acetylation at Lys626. Underlying mechanisms of MTA1-mediated transformation include activation of the Ras-Raf pathway by MTA1 but not by acetylation-inactive MTA1; this was due to the repression of Galphai2 transcription, which negatively influences Ras activation. We observed that acetylated MTA1-histone deacetylase (HDAC) interaction was required for the recruitment of the MTA1-HDAC complex to the Galphai2 regulatory element and consequently for the repression of Galphai2 transcription and expression leading to activation of the Ras-Raf pathway. The findings presented in this study provide for the first time--to the best of our knowledge--evidence of acetylation-dependent oncogenic activity of a cancer-relevant gene product.
  •  
4.
  • Wigerup, Caroline, et al. (författare)
  • Association between Pak1 expression and subcellular localization and tamoxifen resistance in breast cancer patients.
  • 2006
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 1460-2105 .- 0027-8874. ; 98:10, s. 671-680
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: p21-activated kinase 1 (Pak1) phosphorylates many proteins in both normal and transformed cells. Its ability to phosphorylate and thereby activate the estrogen receptor alpha (ER alpha) potentially limits the effectiveness of antiestrogen treatment in breast cancer. Here we studied associations between Pak1 expression and subcellular localization in tumor cells and tamoxifen resistance. Methods: Pak1 protein expression was evaluated in 403 primary breast tumors from premenopausal patients who had been randomly assigned to 2 years of adjuvant tamoxifen or no treatment. Tamoxifen response was evaluated by comparing recurrence-free survival in relation to Pak1 and ER alpha expression in untreated versus tamoxifen-treated patients. Tamoxifen responsiveness of human MCF-7 breast cancer cells that inducibly expressed constitutively active Pak1 or that transiently overexpressed wild-type Pak1 (Wt-Pak1) or Pak1 that lacked functional nuclear localization signals (Pak1 Delta NLS) was evaluated by analyzing cyclin D1 promoter activation and protein levels as markers for ER alpha activation. The response to tamoxifen in relation to Pak1 expression was analyzed in naturally tamoxifen-resistant Ishikawa human endometrial cancer cells. All statistical tests were two-sided. Results: Among patients who had ER alpha-positive tumors with low Pak1 expression, those treated with tamoxifen had better recurrence-free survival than those who received no treatment (hazard ratio [HR] = 0.502, 95% confidence interval [CI] = 0.331 to 0.762; P = .001) whereas there was no difference in recurrence-free survival between treatment groups for patients whose tumors had high cytoplasmic (HR = 0.893, 95% CI = 0.420 to 1.901; P = .769) or any nuclear Pak1 expression (HR = 0.955, 95% CI = 0.405 to 2.250; P = .916). In MCF-7 cells, overexpression of Wt-Pak1, but not of Pak1 Delta NLS, compromised tamoxifen response by stimulating cyclin D1 expression. Treatment of Ishikawa cells with tamoxifen led to an increase in the amount of nuclear Pak1 and Pak1 kinase activity, suggesting that tamoxifen, to some extent, regulates Pak1 expression. Conclusions: Our data support a role for Pak1, particular Pak1 localized to the nucleus, in ER alpha signaling and in tamoxifen resistance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy