SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Landi Stefano) "

Sökning: WFRF:(Landi Stefano)

  • Resultat 1-10 av 24
  • [1]23Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Zhaoming, et al. (författare)
  • Imputation and subset-based association analysis across different cancer types identifies multiple independent risk loci in the TERT-CLPTM1L region on chromosome 5p15.33
  • 2014
  • Ingår i: ; 23:24, s. 6616-6633
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have mapped risk alleles for at least 10 distinct cancers to a small region of 63 000 bp on chromosome 5p15.33. This region harbors the TERT and CLPTM1L genes; the former encodes the catalytic subunit of telomerase reverse transcriptase and the latter may play a role in apoptosis. To investigate further the genetic architecture of common susceptibility alleles in this region, we conducted an agnostic subset-based meta-analysis (association analysis based on subsets) across six distinct cancers in 34 248 cases and 45 036 controls. Based on sequential conditional analysis, we identified as many as six independent risk loci marked by common single-nucleotide polymorphisms: five in the TERT gene (Region 1: rs7726159, P = 2.10 × 10(-39); Region 3: rs2853677, P = 3.30 × 10(-36) and PConditional = 2.36 × 10(-8); Region 4: rs2736098, P = 3.87 × 10(-12) and PConditional = 5.19 × 10(-6), Region 5: rs13172201, P = 0.041 and PConditional = 2.04 × 10(-6); and Region 6: rs10069690, P = 7.49 × 10(-15) and PConditional = 5.35 × 10(-7)) and one in the neighboring CLPTM1L gene (Region 2: rs451360; P = 1.90 × 10(-18) and PConditional = 7.06 × 10(-16)). Between three and five cancers mapped to each independent locus with both risk-enhancing and protective effects. Allele-specific effects on DNA methylation were seen for a subset of risk loci, indicating that methylation and subsequent effects on gene expression may contribute to the biology of risk variants on 5p15.33. Our results provide strong support for extensive pleiotropy across this region of 5p15.33, to an extent not previously observed in other cancer susceptibility loci.
  •  
2.
  • Cipollini, Monica, et al. (författare)
  • Polymorphisms within base and nucleotide excision repair pathways and risk of differentiated thyroid carcinoma
  • Ingår i: DNA Repair. - : Elsevier. - 1568-7864. ; 41, s. 27-31
  • Tidskriftsartikel (refereegranskat)abstract
    • The thyrocytes are exposed to high levels of oxidative stress which could induce DNA damages. Base excision repair (BER) is one of the principal mechanisms of defense against oxidative DNA damage, however recent evidences suggest that also nucleotide excision repair (NER) could be involved. The aim of present work was to identify novel differentiated thyroid cancer (DTC) risk variants in BER and NER genes. For this purpose, the most strongly associated SNPs within NER and BER genes found in our previous GWAS on DTC were selected and replicated in an independent series of samples for a new case-control study. Although a positive signal was detected at the nominal level of 0.05 for rs7689099 (encoding for an aminoacid change proline to arginine at codon 117 within NEIL3), none of the considered SNPs (i.e. rs7990340 and rs690860 within RFC3, rs3744767 and rs1131636 within RPA1, rs16962916 and rs3136166 in ERCC4, and rs17739370 and rs7689099 in NEIL3) was associated with the risk of DTC when the correction of multiple testing was applied. In conclusion, a role of NER and BER pathways was evoked in the susceptibility to DTC. However, this seemed to be limited to few polymorphic genes and the overall effect size appeared weak.
  •  
3.
  • Figueroa, Jonine D., et al. (författare)
  • Genome-wide association study identifies multiple loci associated with bladder cancer risk
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 23:5, s. 1387-1398
  • Tidskriftsartikel (refereegranskat)abstract
    • andidate gene and genome-wide association studies (GWAS) have identified 11 independent susceptibility loci associated with bladder cancer risk. To discover additional risk variants, we conducted a new GWAS of 2422 bladder cancer cases and 5751 controls, followed by a meta-analysis with two independently published bladder cancer GWAS, resulting in a combined analysis of 6911 cases and 11 814 controls of European descent. TaqMan genotyping of 13 promising single nucleotide polymorphisms with P < 1 × 10−5 was pursued in a follow-up set of 801 cases and 1307 controls. Two new loci achieved genome-wide statistical significance: rs10936599 on 3q26.2 (P = 4.53 × 10−9) and rs907611 on 11p15.5 (P = 4.11 × 10−8). Two notable loci were also identified that approached genome-wide statistical significance: rs6104690 on 20p12.2 (P = 7.13 × 10−7) and rs4510656 on 6p22.3 (P = 6.98 × 10−7); these require further studies for confirmation. In conclusion, our study has identified new susceptibility alleles for bladder cancer risk that require fine-mapping and laboratory investigation, which could further understanding into the biological underpinnings of bladder carcinogenesis.
  •  
4.
  • Figueroa, Jonine D., et al. (författare)
  • Genome-wide interaction study of smoking and bladder cancer risk
  • 2014
  • Ingår i: Carcinogenesis. - : Oxford University Press. - 0143-3334 .- 1460-2180. ; 35:8, s. 1737-1744
  • Tidskriftsartikel (refereegranskat)abstract
    • Bladder cancer is a complex disease with known environmental and genetic risk factors. We performed a genome-wide interaction study (GWAS) of smoking and bladder cancer risk based on primary scan data from 3002 cases and 4411 controls from the National Cancer Institute Bladder Cancer GWAS. Alternative methods were used to evaluate both additive and multiplicative interactions between individual single nucleotide polymorphisms (SNPs) and smoking exposure. SNPs with interaction P values < 5 x 10(-5) were evaluated further in an independent dataset of 2422 bladder cancer cases and 5751 controls. We identified 10 SNPs that showed association in a consistent manner with the initial dataset and in the combined dataset, providing evidence of interaction with tobacco use. Further, two of these novel SNPs showed strong evidence of association with bladder cancer in tobacco use subgroups that approached genome-wide significance. Specifically, rs1711973 (FOXF2) on 6p25.3 was a susceptibility SNP for never smokers [combined odds ratio (OR) = 1.34, 95% confidence interval (CI) = 1.20-1.50, P value = 5.18 x 10(-7)]; and rs12216499 (RSPH3-TAGAP-EZR) on 6q25.3 was a susceptibility SNP for ever smokers (combined OR = 0.75, 95% CI = 0.67-0.84, P value = 6.35 x 10-7). In our analysis of smoking and bladder cancer, the tests for multiplicative interaction seemed to more commonly identify susceptibility loci with associations in never smokers, whereas the additive interaction analysis identified more loci with associations among smokers-including the known smoking and NAT2 acetylation interaction. Our findings provide additional evidence of gene-environment interactions for tobacco and bladder cancer.
  •  
5.
  • Figueroa, Jonine D., et al. (författare)
  • Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of European ancestry
  • 2016
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 25:6, s. 1203-1214
  • Tidskriftsartikel (refereegranskat)abstract
    • Candidate gene and genome-wide association studies (GWAS) have identified 15 independent genomic regions associated with bladder cancer risk. In search for additional susceptibility variants, we followed up on four promising single-nucleotide polymorphisms (SNPs) that had not achieved genome-wide significance in 6911 cases and 11 814 controls (rs6104690, rs4510656, rs5003154 and rs4907479, P < 1 × 10−6), using additional data from existing GWAS datasets and targeted genotyping for studies that did not have GWAS data. In a combined analysis, which included data on up to 15 058 cases and 286 270 controls, two SNPs achieved genome-wide statistical significance: rs6104690 in a gene desert at 20p12.2 (P = 2.19 × 10−11) and rs4907479 within the MCF2L gene at 13q34 (P = 3.3 × 10−10). Imputation and fine-mapping analyses were performed in these two regions for a subset of 5551 bladder cancer cases and 10 242 controls. Analyses at the 13q34 region suggest a single signal marked by rs4907479. In contrast, we detected two signals in the 20p12.2 region—the first signal is marked by rs6104690, and the second signal is marked by two moderately correlated SNPs (r2 = 0.53), rs6108803 and the previously reported rs62185668. The second 20p12.2 signal is more strongly associated with the risk of muscle-invasive (T2-T4 stage) compared with non-muscle-invasive (Ta, T1 stage) bladder cancer (case–case P ≤ 0.02 for both rs62185668 and rs6108803). Functional analyses are needed to explore the biological mechanisms underlying these novel genetic associations with risk for bladder cancer.
  •  
6.
  • Fu, Yi-Ping, et al. (författare)
  • The 19q12 Bladder Cancer GWAS Signal : Association with Cyclin E Function and Aggressive Disease
  • 2014
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 74:20, s. 5808-5818
  • Tidskriftsartikel (refereegranskat)abstract
    • A genome-wide association study (GWAS) of bladder cancer identified a genetic marker rs8102137 within the 19q12 region as a novel susceptibility variant. This marker is located upstream of the CCNE1 gene, which encodes cyclin E, a cell-cycle protein. We performed genetic fine-mapping analysis of the CCNE1 region using data from two bladder cancer GWAS (5,942 cases and 10,857 controls). We found that the original GWAS marker rs8102137 represents a group of 47 linked SNPs (with r(2) >= 0.7) associated with increased bladder cancer risk. From this group, we selected a functional promoter variant rs7257330, which showed strong allele-specific binding of nuclear proteins in several cell lines. In both GWASs, rs7257330 was associated only with aggressive bladder cancer, with a combined per-allele OR = 1.18 [95% confidence interval (CI), 1.09-1.27, P = 4.67 x 10(-5)] versus OR = 1.01 (95% CI, 0.93-1.10, P = 0.79) for nonaggressive disease, with P = 0.0015 for case-only analysis. Cyclin E protein expression analyzed in 265 bladder tumors was increased in aggressive tumors (P = 0.013) and, independently, with each rs7257330-A risk allele (P-trend = 0.024). Overexpression of recombinant cyclin E in cell lines caused significant acceleration of cell cycle. In conclusion, we defined the 19q12 signal as the first GWAS signal specific for aggressive bladder cancer. Molecular mechanisms of this genetic association may be related to cyclin E overexpression and alteration of cell cycle in carriers of CCNE1 risk variants. In combination with established bladder cancer risk factors and other somatic and germline genetic markers, the CCNE1 variants could be useful for inclusion into bladder cancer risk prediction models.
  •  
7.
  • Wolpin, Brian M., et al. (författare)
  • Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer
  • 2014
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 46:9, s. 994-
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a multistage genome-wide association study including 7,683 individuals with pancreatic cancer and 14,397 controls of European descent. Four new loci reached genome-wide significance: rs6971499 at 7q32.3 (LINC-PINT, per-allele odds ratio (OR) = 0.79, 95% confidence interval (CI) 0.74-0.84, P = 3.0 x 10(-12)), rs7190458 at 16q23.1 (BCAR1/CTRB1/CTRB2, OR = 1.46, 95% CI 1.30-1.65, P = 1.1 x 10(-10)), rs9581943 at 13q12.2 (PDX1, OR = 1.15, 95% CI 1.10-1.20, P = 2.4 x 10(-9)) and rs16986825 at 22q12.1 (ZNRF3, OR = 1.18, 95% CI 1.12-1.25, P = 1.2 x 10(-8)). We identified an independent signal in exon 2 of TERT at the established region 5p15.33 (rs2736098, OR = 0.80, 95% CI 0.76-0.85, P = 9.8 x 10(-14)). We also identified a locus at 8q24.21 (rs1561927, P = 1.3 x 10(-7)) that approached genome-wide significance located 455 kb telomeric of PVT1. Our study identified multiple new susceptibility alleles for pancreatic cancer that are worthy of follow-up studies.
  •  
8.
  • Zhang, Mingfeng, et al. (författare)
  • Three new pancreatic cancer susceptibility signals identified on chromosomes 1q32.1, 5p15.33 and 8q24.21
  • 2016
  • Ingår i: OncoTarget. - 1949-2553 .- 1949-2553. ; 7:41, s. 66328-66343
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88x10(-15)), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22x10(-9)) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70x10(-8)). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 (NR5A2), chr8q24.21 (MYC) and chr5p15.33 (CLPTM1L-TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal (n = 10) and tumor (n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7x10(-8)). This finding was validated in a second set of paired (n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5x10(-4)-2.0x10(-3)). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology.
  •  
9.
  • Campo, Chiara, et al. (författare)
  • Inherited variants in genes somatically mutated in thyroid cancer
  • Ingår i: PLoS ONE. - : Public Library of Science. - 1932-6203. ; 12:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Tumour suppressor genes when mutated in the germline cause various cancers, but they can also be somatically mutated in sporadic tumours. We hypothesized that there may also be cancer-related germline variants in the genes commonly mutated in sporadic well-differentiated thyroid cancer (WDTC). Methods We performed a two-stage case-control association study with a total of 2214 cases and 2108 healthy controls from an Italian population. By genotyping 34 single nucleotide polymorphisms (SNPs), we covered a total of 59 missense SNPs and SNPs located in the 5' and 3' untranslated regions (UTRs) of 10 different genes. Results The Italian1 series showed a suggestive association for 8 SNPs, from which three were replicated in the Italian2 series. The meta-analysis revealed a study-wide significant association for rs459552 (OR: 0.84, 95%CI: 0.75-0.94) and rs1800900 (OR: 1.15, 95%CI: 1.05-1.27), located in the APC and GNAS genes, respectively. The APC rs459552 is a missense SNP, located in a conserved amino acid position, but without any functional consequences. The GNAS rs1800900 is located at a conserved 5'UTR and according to the experimental ENCODE data it may affect promoter and histone marks in different cell types. Conclusions The results of this study yield new insights on WDTC, showing that inherited variants in the APC and GNAS genes can play a role in the etiology of thyroid cancer. Further studies are necessary to better understand the role of the identified SNPs in the development of WDTC and to functionally validate our in silico predictions.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
  • [1]23Nästa
Typ av publikation
tidskriftsartikel (24)
Typ av innehåll
refereegranskat (23)
övrigt vetenskapligt (1)
Författare/redaktör
Landi, Stefano (16)
Kogevinas, Manolis (10)
Hemminki, Kari (10)
Jacobs, Eric J (10)
Rothman, Nathaniel (10)
Wang, Zhaoming (10)
visa fler...
Malats, Nuria (10)
Gemignani, Federica (10)
Riboli, Elio (9)
Tjonneland, Anne (9)
Albanes, Demetrius (9)
Canzian, Federico (9)
Bueno-de-Mesquita, H ... (9)
Kraft, Peter (9)
Kooperberg, Charles (9)
Silverman, Debra T. (9)
Krogh, Vittorio (8)
Chanock, Stephen J (8)
Trichopoulos, Dimitr ... (8)
Hunter, David J. (8)
Brennan, Paul (8)
Figlioli, Gisella (8)
Elisei, Rossella (8)
Romei, Cristina (8)
Cipollini, Monica (8)
Ljungberg, Börje (7)
Cancel-Tassin, Geral ... (7)
Gago Dominguez, Manu ... (7)
Vineis, Paolo (7)
Garcia-Closas, Monts ... (7)
Hutchinson, Amy (7)
Cussenot, Olivier (7)
Försti, Asta (7)
Yuan, Jian-Min (7)
Chatterjee, Nilanjan (7)
Chung, Charles C. (7)
Wu, Xifeng (7)
Pike, Malcolm C. (7)
van den Berg, David (7)
Tardon, Adonina (7)
De Vivo, Immaculata (7)
Bambi, Franco (7)
Cristaudo, Alfonso (7)
Figueroa, Jonine D (7)
Cortessis, Victoria ... (7)
Porru, Stefano (7)
Baris, Dalsu (7)
Schwenn, Molly (7)
Johnson, Alison (7)
Schned, Alan (7)
visa färre...
Lärosäte
Umeå universitet (12)
Lunds universitet (11)
Karolinska Institutet (4)
Uppsala universitet (2)
Göteborgs universitet (1)
Stockholms universitet (1)
Språk
Engelska (24)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (24)
Naturvetenskap (1)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy