SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lange U) ;mspu:(conferencepaper)"

Sökning: WFRF:(Lange U) > Konferensbidrag

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allahgholi, A., et al. (författare)
  • AGIPD 1.0 : The high-speed high dynamic range readout ASIC for the adaptive gain integrating pixel detector at the European XFEL
  • 2014
  • Ingår i: 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2014. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781479960972
  • Konferensbidrag (refereegranskat)abstract
    • AGIPD is a hybrid pixel X-ray detector developed by a collaboration between Deutsches Elektronen-Synchrotron (DESY), Paul-Scherrer-Institute (PSI), University of Hamburg and the University of Bonn. The detector is designed to comply with the requirements of the European XFEL. The radiation tolerant Application Specific Integrated Circuit (ASIC) is designed with the following highlights: high dynamic range, spanning from single photon sensitivity up to 104 × 12.4 keV photons, achieved by the use of dynamic gain switching, auto-selecting one of 3 gains of the charge sensitive pre-amplifier. To cope with the unique features of the European XFEL source, image data is stored in 352 analogue memory cells per pixel. The selected gain is stored in the same way and depth, encoded as one of 3 voltage levels. These memories are operated in random-access mode at 4.5MHz frame rate. Data is read out on a row-by-row basis via multiplexers to the DAQ system for digitisation during the 99.4ms gap between the bunch trains of the European XFEL. The AGIPD 1.0 ASIC features 64×64 pixels with a pixel area of 200×200 μm2. It is bump-bonded to a 500 μm thick silicon sensor. The principles of the chip architecture were proven in different experiments and the ASIC characterization was performed with a series of development prototypes. The mechanical concept of the detector system was developed in close contact with the XFEL beamline scientists to ensure a seamless integration into the beamline setup and is currently being manufactured. The first single module system was successfully tested at APS1 the high dynamic range allows imaging of the direct synchrotron beam along with single photon sensitivity and burst imaging of 352 subsequent frames synchronized to the source.
  •  
2.
  • Allahgholi, A., et al. (författare)
  • The AGIPD 1.0 ASIC : Random access high frame rate, high dynamic range X-ray camera readout for the European XFEL
  • 2015
  • Ingår i: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781467398626
  • Konferensbidrag (refereegranskat)abstract
    • The European XFEL is an extremely brilliant Free Electron Laser Source with a very demanding pulse structure: trains of 2700 X-Ray pulses are repeated at 10 Hz. The pulses inside the train are spaced by 220 ns and each one contains up to 1012 photons of 12.4 keV, while being ≤ 100 fs in length. AGIPD (Adaptive Gain Integrating Pixel Detector) is a hybrid 1M-pixel detector developed by DESY, PSI, and the Universities of Bonn and Hamburg to cope with these properties. Thus the readout ASIC has to provide not only single photon sensitivity and a dynamic range ≳ 104 photons/pixel in the same image but also a memory for as many images of a pulse train as possible for delayed readout prior to the next train. The AGIPD 1.0 ASIC uses a 130 nm CMOS technology and radiation tolerant techniques to withstand the radiation damage incurred by the high impinging photon flux. Each ASIC contains 64 × 64 pixels of 200μmχ200μm. The circuit of each pixel contains a charge sensitive preamplifier with threefold switchable gain, a discriminator for an adaptive gain selection, and a correlated double sampling (CDS) stage to remove reset and low-frequency noise components. The output of the CDS, as well as the dynamically selected gain is sampled in a capacitor-based analogue memory for 352 samples, which occupies about 80% of a pixels area. For readout each pixel features a charge sensitive buffer. A control circuit with a command based interface provides random access to the memory and controls the row-wise readout of the data via multiplexers to four differential analogue ports. The AGIPD 1.0 full scale ASIC has been received back from the foundry in fall of 2013. Since then it has been extensively characterised also with a sensor as a single chip and in 2 × 8-chip modules for the AGIPD 1 Mpix detector. We present the design of the AGIPD 1.0 ASIC along with supporting results, also from beam tests at PETRA III and APS, and show changes incorporated in the recently taped out AGIPD 1.1 ASIC upgrade.
  •  
3.
  •  
4.
  • Becker, J., et al. (författare)
  • The high speed, high dynamic range camera AGIPD
  • 2013
  • Ingår i: IEEE Nuclear Science Symposium Conference Record. - : IEEE conference proceedings. - 9781479905348 ; , s. Art. no. 6829504-
  • Konferensbidrag (refereegranskat)abstract
    • The European X-Ray Free Electron Laser (XFEL) will provide ultra short, highly coherent X-ray pulses which will revolutionize scientific experiments in a variety of disciplines spanning physics, chemistry, materials science, and biology. One of the differences between the European XFEL and other free electron laser sources is the high pulse frequency of 4.5 MHz. The European XFEL will provide pulse trains, consisting of up to 2700 pulses separated by 220 ns (600 μs in total) followed by an idle time of 99.4 ms, resulting in a supercycle of 10 Hz. Dedicated fast 2D detectors are being developed, one of which is the Adaptive Gain Integrating Pixel Detector (AGIPD). AGIPD is based on the hybrid pixel technology. The design goals of the recently produced, radiation hard Application Specific Integrated Circuit (ASIC) with dynamic gain switching amplifiers are (for each pixel) a dynamic range of more than 10 4 12.4 keV photons in the lowest gain, single photon sensitivity in the highest gain, an analog memory capable of storing 352 images, and operation at 4.5 MHz frame rate. A vetoing scheme allows to maximize the number of useful images that are acquired by providing the possibility to overwrite any previously recorded image during the pulse train. The AGIPD will feature a pixel size of (200 μm)2 and a silicon sensor with a thickness of 500 μm. The image data is read out and digitized between pulse trains. © 2013 IEEE.
  •  
5.
  • Correa, J., et al. (författare)
  • The PERCIVAL soft X-ray Detector
  • 2018
  • Ingår i: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2018 - Proceedings. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781538684948
  • Konferensbidrag (refereegranskat)abstract
    • The PERCIVAL collaboration to develop a soft X-ray imager able to address the challenges of high brilliance light sources, such as new-generation synchrotrons and Free Electron Lasers, has reached one of its major milestones: a full 2-MegaPixel (P2M) system (uninterrupted 4 × 4 cm2 active area) has already seen its first light.Smaller prototypes of the device, a monolithic active pixel sensor based on CMOS technology, have already been fully characterised, and have demonstrated high frame rate, large dynamic range, and relatively high quantum efficiency.The PERCIVAL modular layout allows for clover-leaf like arrangement of up to four P2M systems. Moreover, it will be post-processed in order to achieve a high quantum efficiency in its primary energy range (250 eV to 1 keV).We will present the P2M system, its status and newest results, bring these in context with achieved prototype performance, and outline future steps. 
  •  
6.
  •  
7.
  • Marras, A., et al. (författare)
  • Development of CoRDIA : An Imaging Detector for next-generation Synchrotron Rings and Free Electron Lasers
  • 2022
  • Ingår i: Journal of Physics. - : Institute of Physics (IOP).
  • Konferensbidrag (refereegranskat)abstract
    • An x-ray imager is being developed for use in diffraction-limited synchrotron rings and continuous wave free electron lasers. The imager is named CoRDIA (COntinuous Readout Digitising Imager Array) and aims at achieving continuous operation at a frame rate in excess of 100kHz. Other goals include single-photon sensitivity at 12 keV (or below), a full well in excess of 10k photon/pixel/image, and a 100μm pixel pitch. The detector ASIC will be compatible with multiple sensor materials to cover different energy ranges. Exploratory prototypes of the readout ASIC (basic circuital blocks) have been manufactured in TSMC 65nm technology: they are presently under test. 
  •  
8.
  • Marras, A., et al. (författare)
  • Experimental characterization of the PERCIVAL soft X-ray detector
  • 2016
  • Ingår i: 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2015. - : Institute of Electrical and Electronics Engineers (IEEE). - 9781467398626
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Considerable interest has been manifested for the use of high-brilliance X-ray synchrotron sources and X-ray Free-Electron Lasers for the investigation of samples.
  •  
9.
  • Marras, A., et al. (författare)
  • Percival P2M-FSI detector : First test at a Synchrotron Ring beamline with tender x-ray photons
  • 2019
  • Ingår i: 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2019. - : IEEE. - 9781728141640
  • Konferensbidrag (refereegranskat)abstract
    • In this paper, we are presenting the results of the first test of the Percival P2M-FSI detector with tender x-rays photons at a synchrotron beamline. Percival is a monolithic CMOS Imager for detection of x-rays in Synchrotron Rings and Free Electron Lasers: the Front-Side-Illuminated (FSI) version of the detector has been proven able to successfully distinguish tender (2keV) x-ray single photons. 
  •  
10.
  • Marras, A., et al. (författare)
  • Vertically integrated circuits : Example of an application to an x-ray detector
  • 2014
  • Ingår i: 2014 21st IEEE International Conference on Electronics, Circuits and Systems, ICECS 2014. - 9781479942428 ; , s. 243-246
  • Konferensbidrag (refereegranskat)abstract
    • Replacing planar circuits with vertically integrated ones allows to increment circuit functionalities on a given silicon area, while avoiding some of the problems associated with aggressively scaled technology nodes. This is particularly true for applications likely to subject circuits to high doses of ionizing radiation (such of x-ray detectors to be used in synchrotron rings and Free Electron Lasers), since the degradation mechanisms of some of the innovative materials to be used in most recent nodes have not been fully characterized yet. In this paper, an evolution is presented for the readout ASIC of a pixelated x-ray detector to be used for such applications. The readout circuit is distributed in a stack of two vertically interconnected tiers, thus doubling the circuitry resident in each pixel without increasing the pixel pitch (and thus compromising spatial resolution of the detector). A first prototype has been designed and manufactured, using a commercial 130 nm CMOS technology. Design issues are discussed, along with preliminary characterization results. © 2014 IEEE.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy