SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lannfelt Lars) ;pers:(Söderberg Linda)"

Sökning: WFRF:(Lannfelt Lars) > Söderberg Linda

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lord, Anna, 1979-, et al. (författare)
  • Amyloid-β protofibril levels correlate with spatial learning in Arctic Alzheimer’s disease transgenic mice
  • 2009
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 276:4, s. 995-1006
  • Tidskriftsartikel (refereegranskat)abstract
    • Oligomeric assemblies of amyloid-β (Aβ) are suggested to be central in the pathogenesis of Alzheimer's disease because levels of soluble Aβ correlate much better with the extent of cognitive dysfunctions than do senile plaque counts. Moreover, such Aβ species have been shown to be neurotoxic, to interfere with learned behavior and to inhibit the maintenance of hippocampal long-term potentiation. The tg-ArcSwe model (i.e. transgenic mice with the Arctic and Swedish Alzheimer mutations) expresses elevated levels of Aβ protofibrils in the brain, making tg-ArcSwe a highly suitable model for investigating the pathogenic role of these Aβ assemblies. In the present study, we estimated Aβ protofibril levels in the brain and cerebrospinal fluid of tg-ArcSwe mice, and also assessed their role with respect to cognitive functions. Protofibril levels, specifically measured with a sandwich ELISA, were found to be elevated in young tg-ArcSwe mice compared to several transgenic models lacking the Arctic mutation. In aged tg-ArcSwe mice with considerable plaque deposition, Aβ protofibrils were approximately 50% higher than in younger mice, whereas levels of total Aβ were exponentially increased. Young tg-ArcSwe mice showed deficits in spatial learning, and individual performances in the Morris water maze were correlated inversely with levels of Aβ protofibrils, but not with total Aβ levels. We conclude that Aβ protofibrils accumulate in an age-dependent manner in tg-ArcSwe mice, although to a far lesser extent than total Aβ. Our findings suggest that increased levels of Aβ protofibrils could result in spatial learning impairment.
  •  
2.
  • Abu Hamdeh, Sami, et al. (författare)
  • Rapid amyloid-β oligomer and protofibril accumulation in traumatic brain injury
  • 2018
  • Ingår i: Brain Pathology. - : Wiley. - 1015-6305 .- 1750-3639. ; 28:4, s. 451-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Deposition of amyloid-β (Aβ) is central to Alzheimer's disease (AD) pathogenesis and associated with progressive neurodegeneration in traumatic brain injury (TBI). We analyzed predisposing factors for Aβ deposition including monomeric Aβ40, Aβ42 and Aβ oligomers/protofibrils, Aβ species with pronounced neurotoxic properties, following human TBI. Highly selective ELISAs were used to analyze N-terminally intact and truncated Aβ40 and Aβ42, as well as Aβ oligomers/protofibrils, in human brain tissue, surgically resected from severe TBI patients (n = 12; mean age 49.5 ± 19 years) due to life-threatening brain swelling/hemorrhage within one week post-injury. The TBI tissues were compared to post-mortem AD brains (n = 5), to post-mortem tissue of neurologically intact (NI) subjects (n = 4) and to cortical biopsies obtained at surgery for idiopathic normal pressure hydrocephalus patients (iNPH; n = 4). The levels of Aβ40 and Aβ42 were not elevated by TBI. The levels of Aβ oligomers/protofibrils in TBI were similar to those in the significantly older AD patients and increased compared to NI and iNPH controls (P < 0.05). Moreover, TBI patients carrying the AD risk genotype Apolipoprotein E epsilon3/4 (APOE ε3/4; n = 4) had increased levels of Aβ oligomers/protofibrils (P < 0.05) and of both N-terminally intact and truncated Aβ42 (P < 0.05) compared to APOE ε3/4-negative TBI patients (n = 8). Neuropathological analysis showed insoluble Aβ aggregates (commonly referred to as Aβ plaques) in three TBI patients, all of whom were APOE ε3/4 carriers. We conclude that soluble intermediary Aβ aggregates form rapidly after TBI, especially among APOE ε3/4 carriers. Further research is needed to determine whether these aggregates aggravate the clinical short- and long-term outcome in TBI.
  •  
3.
  • Lord, Anna, et al. (författare)
  • An amyloid-beta protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimer's disease
  • 2009
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 36:3, s. 425-434
  • Tidskriftsartikel (refereegranskat)abstract
    • Human genetics link Alzheimer's disease pathogenesis to excessive accumulation of amyloid-beta (Abeta) in brain, but the symptoms do not correlate with senile plaque burden. Since soluble Abeta aggregates can cause synaptic dysfunctions and memory deficits, these species could contribute to neuronal dysfunction and dementia. Here we explored selective targeting of large soluble aggregates, Abeta protofibrils, as a new immunotherapeutic strategy. The highly protofibril-selective monoclonal antibody mAb158 inhibited in vitro fibril formation and protected cells from Abeta protofibril-induced toxicity. When the mAb158 antibody was administered for 4 months to plaque-bearing transgenic mice with both the Arctic and Swedish mutations (tg-ArcSwe), Abeta protofibril levels were lowered while measures of insoluble Abeta were unaffected. In contrast, when treatment began before the appearance of senile plaques, amyloid deposition was prevented and Abeta protofibril levels diminished. Therapeutic intervention with mAb158 was however not proven functionally beneficial, since place learning depended neither on treatment nor transgenicity. Our findings suggest that Abeta protofibrils can be selectively cleared with immunotherapy in an animal model that display highly insoluble Abeta deposits, similar to those of Alzheimer's disease brain.
  •  
4.
  •  
5.
  •  
6.
  • Johannesson, Malin, et al. (författare)
  • Elevated soluble amyloid beta protofibrils in Down syndrome and Alzheimer's disease
  • 2021
  • Ingår i: Molecular and Cellular Neuroscience. - : Elsevier. - 1044-7431 .- 1095-9327. ; 114
  • Tidskriftsartikel (refereegranskat)abstract
    • Down syndrome (DS) is caused by trisomy of chromosome 21, which leads to a propensity to develop amyloid beta (A beta) brain pathology in early adulthood followed later by cognitive and behavioral deterioration. Characterization of the A beta pathology is important to better understand the clinical deterioration of DS individuals and to identify interventive strategies. Brain samples from people with DS and Alzheimer's disease (AD), as well as nondemented controls (NDC), were analyzed with respect to different A beta species. Immunohistochemical staining using antibodies towards A beta was also performed. Elevated levels of soluble A beta protofibrils and insoluble A beta x-40 and A beta x-42 in formic acid brain extracts, and elevated immunohistochemical staining of A beta deposits were demonstrated with the antibody BAN2401 (lecanemab) in DS and AD compared with NDC. These data and the promising data in a large phase 2 CE clinical trial with lecanemab suggest that lecanemab may have the potential to preserve cognitive capacity in DS. Lecanemab is currently in a phase 3 CE clinical trial.
  •  
7.
  • Nordström, Eva, et al. (författare)
  • ABBV-0805, a novel antibody selective for soluble aggregated alpha-synuclein, prolongs lifespan and prevents buildup of alpha-synuclein pathology in mouse models of Parkinson's disease
  • 2021
  • Ingår i: Neurobiology of Disease. - : Elsevier. - 0969-9961 .- 1095-953X. ; 161
  • Tidskriftsartikel (refereegranskat)abstract
    • A growing body of evidence suggests that aggregated alpha-synuclein, the major constituent of Lewy bodies, plays a key role in the pathogenesis of Parkinson's disease and related alpha-synucleinopathies. Immunotherapies, both active and passive, against alpha-synuclein have been developed and are promising novel treatment strategies for such disorders. Here, we report on the humanization and pharmacological characteristics of ABBV-0805, a monoclonal antibody that exhibits a high selectivity for human aggregated alpha-synuclein and very low affinity for monomers. ABBV-0805 binds to a broad spectrum of soluble aggregated alpha-synuclein, including small and large aggregates of different conformations. Binding of ABBV-0805 to pathological alpha-synuclein was demonstrated in Lewy body-positive post mortem brains of Parkinson's disease patients. The functional potency of ABBV-0805 was demonstrated in several cellular assays, including Fc gamma-receptor mediated uptake of soluble aggregated alpha-synuclein in microglia and inhibition of neurotoxicity in primary neurons. In vivo, the murine version of ABBV-0805 (mAb47) displayed significant dose dependent decrease of alpha-synuclein aggregates in brain in several mouse models, both in prophylactic and therapeutic settings. In addition, mAb47 treatment of alpha-synuclein transgenic mice resulted in a significantly prolonged survival. ABBV-0805 selectively targets soluble toxic alpha-synuclein aggregates with a picomolar affinity and demonstrates excellent in vivo efficacy. Based on the strong preclinical findings described herein, ABBV-0805 has been progressed into clinical development as a potential disease-modifying treatment for Parkinson's disease.
  •  
8.
  • Rizoska, Biljana, et al. (författare)
  • Disease modifying effects of the amyloid-beta protofibril-selective antibody mAb158 in aged Tg2576 transgenic mice
  • 2024
  • Ingår i: Molecular and Cellular Neuroscience. - : Elsevier. - 1044-7431 .- 1095-9327. ; 130
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid beta (Aβ) peptides, which aggregate to form neocortical plaques in Alzheimer's disease, exist in states that range from soluble monomers and oligomers/protofibrils to insoluble fibrillar amyloid. The present study evaluated the effects of mAb158, a mouse monoclonal antibody version of lecanemab that preferentially binds to soluble Aβ protofibrils, in aged transgenic mice (Tg2576) with Aβ pathology. Female Tg2576 mice (12 months old) received weekly intraperitoneal mAb158 (35 mg/kg) or vehicle for 4 weeks or for 18 weeks, with or without a subsequent 12-week off-treatment period. Aβ protofibril levels were significantly lower in mAb158-treated animals at both 4 and 18 weeks, while longer treatment duration (18 weeks) was required to observe significantly lower Aβ42 levels in insoluble brain fractions and lower Aβ plaque load. Following the off-treatment period, comparison of the vehicle- and mAb158-treated mice demonstrated that the Aβ protofibril levels, insoluble Aβ42 levels and Aβ plaque load remained significantly lower in mAb158-treated animals, as compared with age-matched controls. However, there was a significant increase of brain accumulation of both the Aβ protofibril levels, insoluble Aβ42 levels and Aβ plaque load after treatment cessation. Thus, repeated mAb158 treatment of aged Tg2576 mice first reduced Aβ protofibril levels within 4 weeks of treatment, which then was followed by a reduction of amyloid plaque pathology within 18 weeks of treatment. These effects were maintained 12 weeks after the final dose, indicating that mAb158 had a disease-modifying effect on the Aβ pathology in this mouse model. In addition, brain accumulation of both Aβ protofibril levels and amyloid pathology progressed after discontinuation of the treatment which supports the importance of continued treatment with mAb158 to maintain the effects on Aβ pathology.
  •  
9.
  • Syvänen, Stina, et al. (författare)
  • Efficient clearence of A beta protofibrils in A beta PP-transgenic mice treated with a brain-penetrating bifunctional antibody
  • 2018
  • Ingår i: Alzheimer's Research & Therapy. - : BIOMED CENTRAL LTD. - 1758-9193. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Amyloid-beta (A beta) immunotherapy is one of the most promising disease-modifying strategies for Alzheimer's disease (AD) Despite recent progress targeting aggregated forms of A beta, low antibody brain penetrance remains a challenge In the piesent study, we used transferrin receptor (TfR)-mediated transcytosis to facilitate brain uptake of our previously developed A beta protofibril-selective mAb158, with the aim of increasing the efficacy of immunotherapy directed toward soluble A beta protofibills. Methods: A beta protein precursor (A beta PP)-transgenic mice (tg-ArcSwe) were given a single dose of mAb158, modified for TfR-mediated transcytosis (RmAb158-scFvSDB), in companson with an equimolar dose or a tenfold higher dose of unmodified recombinant mAb158 (RmAb158) Soluble A beta protofibrills and total A beta in the brain were measured by enzyme-linked immunosorbent assay (ELISA) Brain distribution of radiolabeled antibodies was visualized by positron emission tomography (PET) and ex vivo autoiadiography. Results: ELISA analysis of Tris-buffered saline brain extracts demonstrated a 40% reduction of soluble A beta protofibrils in both RmAb158-scFv8D3- and high-dose RmAb158-treated mice, whereas there was no A beta protofibril reduction in mice treated with a low dose of RmAb158. Further, ex vivo autoradiography and PET imaging revealed diffeient brain distribution patterns of RmAb158-scFv8D3 and RmAb158, suggesting that these antibodies may affect A beta levels by different mechanisms. Conclusions: With a combination of biochemical and imaging analyses, this study demonstrates that antibodies engineered to be transported across the blood brain barrier can be used to increase the efficacy of A beta immunotherapy. This strategy may allow for decreased antibody doses and thereby reduced side effects and treatment costs.
  •  
10.
  • Söderberg, Linda, et al. (författare)
  • Amyloid-beta antibody binding to cerebral amyloid angiopathy fibrils and risk for amyloid-related imaging abnormalities
  • 2024
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Therapeutic antibodies have been developed to target amyloid-beta (Aβ), and some of these slow the progression of Alzheimer’s disease (AD). However, they can also cause adverse events known as amyloid-related imaging abnormalities with edema (ARIA-E). We investigated therapeutic Aβ antibody binding to cerebral amyloid angiopathy (CAA) fibrils isolated from human leptomeningeal tissue to study whether this related to the ARIA-E frequencies previously reported by clinical trials. The binding of Aβ antibodies to CAA Aβ fibrils was evaluated in vitro using immunoprecipitation, surface plasmon resonance, and direct binding assay. Marked differences in Aβ antibody binding to CAA fibrils were observed. Solanezumab and crenezumab showed negligible CAA fibril binding and these antibodies have no reported ARIA-E cases. Lecanemab showed a low binding to CAA fibrils, consistent with its relatively low ARIA-E frequency of 12.6%, while aducanumab, bapineuzumab, and gantenerumab all showed higher binding to CAA fibrils and substantially higher ARIA-E frequencies (25–35%). An ARIA-E frequency of 24% was reported for donanemab, and its binding to CAA fibrils correlated with the amount of pyroglutamate-modified Aβ present. The findings of this study support the proposal that Aβ antibody-CAA interactions may relate to the ARIA-E frequency observed in patients treated with Aβ-based immunotherapies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15
Typ av publikation
tidskriftsartikel (13)
annan publikation (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (12)
övrigt vetenskapligt/konstnärligt (2)
populärvet., debatt m.m. (1)
Författare/redaktör
Lannfelt, Lars (15)
Möller, Christer (8)
Erlandsson, Anna (5)
Ingelsson, Martin (4)
Zachrisson, Olof (4)
visa fler...
Nygren, Patrik (4)
Johannesson, Malin (4)
Nilsson, Lars (3)
Sehlin, Dag, 1976- (3)
Eriksson, Fredrik (3)
Nikitidou, Elisabeth (3)
Englund, Hillevi (3)
Gumucio, Astrid (3)
Gellerfors, Pär (3)
Alafuzoff, Irina (2)
Basun, Hans (2)
Gkanatsiou, Eleni (2)
Zyśk, Marlena (2)
Boström, Emma (1)
Abu Hamdeh, Sami (1)
Marklund, Niklas (1)
Hillered, Lars, 1952 ... (1)
Rollman Waara, Erik (1)
Hallbeck, Martin, As ... (1)
Hillered, Lars (1)
Fritz, Nicolas (1)
Gustavsson, Tobias (1)
Bergström, Joakim (1)
Sigvardson, Jessica (1)
Nordenankar, Karin (1)
Sunnemark, Dan (1)
Hultqvist, Greta, 19 ... (1)
Syvänen, Stina (1)
Giedraitis, Vilmanta ... (1)
Kilander, Lena (1)
Michno, Wojciech (1)
Gallasch, Linn (1)
Löwenmark, Malin (1)
Clausen, Fredrik (1)
Björklund, My (1)
Nilsson, Lars N G (1)
Blom, Magdalena (1)
Hanrieder, Jörg (1)
Kasrayan, Alex (1)
Danfors, Torsten, 19 ... (1)
Brundin, RoseMarie (1)
Dentoni, Giacomo (1)
Willbold, Dieter (1)
Svensson, Anne-Sophi ... (1)
visa färre...
Lärosäte
Uppsala universitet (15)
Karolinska Institutet (1)
Språk
Engelska (15)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy