SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larsson Elna Marie) ;pers:(Fahlström Markus)"

Sökning: WFRF:(Larsson Elna Marie) > Fahlström Markus

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Falk, Anna, et al. (författare)
  • Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging : a histogram analysis approach
  • 2014
  • Ingår i: Neuroradiology. - : Springer Science and Business Media LLC. - 0028-3940 .- 1432-1920. ; 56:12, s. 1031-1038
  • Tidskriftsartikel (refereegranskat)abstract
    • IntroductionPerfusion magnetic resonance imaging (MRI) can be used in the pre-operative assessment of brain tumours. The aim of this prospective study was to identify the perfusion parameters from dynamic contrast-enhanced (DCE) and dynamic susceptibility contrast (DSC) perfusion imaging that could best discriminate between grade II and III gliomas.MethodsMRI (3 T) including morphological ((T2 fluid attenuated inversion recovery (FLAIR) and T1-weighted (T1W)+Gd)) and perfusion (DCE and DSC) sequences was performed in 39 patients with newly diagnosed suspected low-grade glioma after written informed consent in this review board-approved study. Regions of interests (ROIs) in tumour area were delineated on FLAIR images co-registered to DCE and DSC, respectively, in 25 patients with histopathological grade II (n = 18) and III (n  = 7) gliomas. Statistical analysis of differences between grade II and grade III gliomas in histogram perfusion parameters was performed, and the areas under the curves (AUC) from the ROC analyses were evaluated.ResultsIn DCE, the skewness of transfer constant (k trans) was found superior for differentiating grade II from grade III in all gliomas (AUC 0.76). In DSC, the standard deviation of relative cerebral blood flow (rCBF) was found superior for differentiating grade II from grade III gliomas (AUC 0.80).ConclusionsHistogram parameters from k trans (DCE) and rCBF (DSC) could most efficiently discriminate between grade II and grade III gliomas.
  •  
2.
  •  
3.
  • Dhara, Ashis Kumar, et al. (författare)
  • Segmentation of Post-operative Glioblastoma in MRI by U-Net with Patient-specific Interactive Refinement
  • 2019
  • Ingår i: Brainlesion. - Cham : Springer. - 9783030117221 - 9783030117238 ; , s. 115-122
  • Konferensbidrag (refereegranskat)abstract
    • Accurate volumetric change estimation of glioblastoma is very important for post-surgical treatment follow-up. In this paper, an interactive segmentation method was developed and evaluated with the aim to guide volumetric estimation of glioblastoma. U-Net based fully convolutional network is used for initial segmentation of glioblastoma from post contrast MR images. The max flow algorithm is applied on the probability map of U-Net to update the initial segmentation and the result is displayed to the user for interactive refinement. Network update is performed based on the corrected contour by considering patient specific learning to deal with large context variations among different images. The proposed method is evaluated on a clinical MR image database of 15 glioblastoma patients with longitudinal scan data. The experimental results depict an improvement of segmentation performance due to patient specific fine-tuning. The proposed method is computationally fast and efficient as compared to state-of-the-art interactive segmentation tools. This tool could be useful for post-surgical treatment follow-up with minimal user intervention.
  •  
4.
  • Fahlström, Markus, et al. (författare)
  • Correlation between regional cerebral blood flow based on simultaneously acquired arterial spin labelling MRI and 15O-water-PET using zero-echo-time-based attenuation correction
  • 2017
  • Ingår i: Journal of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 58:S1
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Objectives: Arterial spin labelling (ASL) MRI promises clinical value in several common neurological disorders. Its quantitative accuracy and reproducibility, however, need to be further validated, ideally using simultaneously acquired measurements with 15O-water-PET on an integrated PET-MR scanner. However, so far, few studies have attempted this and the inclusion of bone in MR-based attenuation correction for PET has thus far been a challenge, compromising the quantitative accuracy of PET-MR based 15O-water PET data. The aim of the present work was to assess the correlation of ASL- and 15O-water-PET based regional cerebral blood flow (rCBF) values based on simultaneously acquired data, using zero-echo-time (ZTE)-based attenuation correction, as well as to assess the reproducibility of ASL-based rCBF.Methods: Six subjects underwent 10 min PET scans after automated bolus injection of 400 MBq 15O-water (1 mL/s during 5 s followed by 35 mL saline at 2 mL/s) on a time-of-flight integrated PET-MR scanner (Signa PET-MR, GE Healthcare). Arterial blood radioactivity concentrations were monitored using continuous sampling from the radial artery (Swisstrace Twilite Two). Simultaneously, a 3D FSE pseudo-continuous ASL (3D pCASL) with a spiral read-out as supplied by the scanner manufacturer in the commercial software were acquired using an 8 channel head coil (Invivo Hi-Res Head Coil). In addition, 3D T1-w, ZTE and Dixon fat-water MRI were acquired. The ASL procedure was repeated after 2 h (patients remained in the scanner). Quantifiable ASL-based CBF maps were generated. PET images were reconstructed into 26 frames of increasing durations using time-of-flight OSEM (2 iterations, 28 subsets) and a 5 mm post-filter, with ZTE-based attenuation correction. Blood sampler data were corrected for delay and dispersion and 15O-water-based CBF maps were calculated using a basis function implementation of the single tissue compartment model including a fitted blood volume parameter. CBF maps were co-registered to each patient's T1-w image. 3D T1-w images were segmented and normalised to MNI space using SPM12, and anterior, middle and posterior flow territory volumes of interest (VOIs) were created from a standard template in MNI space and inversely transformed for each patient. In addition, a 45-VOI probabilistic template was applied using PVElab software. Correlations between PET- and ASL-based rCBF values were assessed using regression analysis, and reproducibility of ASL using a paired t-test.Results: Mean (CI) total brain grey matter CBF values were 67.2 (48.0-86.5) mL/min/100 g for 15O-water-PET and 65.5 (55.7-75.5) mL/min/100 g for ASL. Although correlation and agreement between 15O-water and ASL-based rCBF for individual VOIs in the 45-VOI template were generally poor, significant correlations were found on a grey matter flow territory basis, with R2 ranging from 0.70 in the anterior flow territory to 0.86 in the middle flow territory. rCBF values were significantly reduced between second and first ASL for all flow territories (p<0.01), with a mean decrease of 10%.Conclusion: A good correlation between regional flow territory CBF values based on ASL and 15O-water-PET was found, using ZTE-based attenuation correction for PET data which takes bone tissue into account. ASL values for regional flow territories may have potential applications in patients with dementia or cerebrovascular diseases affecting blood flow such as moya moya. The decrease of ASL-based rCBF values in the reproducibility study needs to be investigated further to assess whether this is a methodological issue or reflects a true decrease in rCBF. Research Support: Uppsala County Council
  •  
5.
  • Fahlström, Markus, et al. (författare)
  • Dynamic contrast-enhanced magnetic resonance imaging may act as a biomarker for vascular damage in normal appearing brain tissue after radiotherapy in patients with glioblastoma
  • 2018
  • Ingår i: Acta Radiologica Open. - : Sage Publications. - 2058-4601. ; 7:11
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundDynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising perfusion method and may be useful in evaluating radiation-induced changes in normal-appearing brain tissue.PurposeTo assess whether radiotherapy induces changes in vascular permeability (Ktrans) and the fractional volume of the extravascular extracellular space (Ve) derived from DCE-MRI in normal-appearing brain tissue and possible relationships to radiation dose given.Material and MethodsSeventeen patients with glioblastoma treated with radiotherapy and chemotherapy were included; five were excluded because of inconsistencies in the radiotherapy protocol or early drop-out. DCE-MRI, contrast-enhanced three-dimensional (3D) T1-weighted (T1W) images and T2-weighted fluid attenuated inversion recovery (T2-FLAIR) images were acquired before and on average 3.3, 30.6, 101.6, and 185.7 days after radiotherapy. Pre-radiotherapy CE T1W and T2-FLAIR images were segmented into white and gray matter, excluding all non-healthy tissue. Ktrans and Ve were calculated using the extended Kety model with the Parker population-based arterial input function. Six radiation dose regions were created for each tissue type, based on each patient’s computed tomography-based dose plan. Mean Ktrans and Ve were calculated over each dose region and tissue type.ResultsGlobal Ktrans and Ve demonstrated mostly non-significant changes with mean values higher for post-radiotherapy examinations in both gray and white matter compared to pre-radiotherapy. No relationship to radiation dose was found.ConclusionAdditional studies are needed to validate if Ktrans and Ve derived from DCE-MRI may act as potential biomarkers for acute and early-delayed radiation-induced vascular damages. No dose-response relationship was found.
  •  
6.
  • Fahlström, Markus, et al. (författare)
  • Evaluation of Arterial Spin Labeling MRI : Comparison with 15O-Water PET on an Integrated PET/MR Scanner
  • 2021
  • Ingår i: Diagnostics (Basel). - : MDPI. - 2075-4418. ; 11:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral blood flow (CBF) measurements are of high clinical value and can be acquired non-invasively with no radiation exposure using pseudo-continuous arterial spin labeling (ASL). The aim of this study was to evaluate accordance in resting state CBF between ASL (CBFASL) and 15O-water positron emission tomography (PET) (CBFPET) acquired simultaneously on an integrated 3T PET/MR system. The data comprised ASL and dynamic 15O-water PET data with arterial blood sampling of eighteen subjects (eight patients with focal epilepsy and ten healthy controls, age 21 to 61 years). 15O-water PET parametric CBF images were generated using a basis function implementation of the single tissue compartment model. Cortical and subcortical regions were automatically segmented using Freesurfer. Average CBFASL and CBFPET in grey matter were 60 ± 20 and 75 ± 22 mL/100 g/min respectively, with a relatively high correlation (r = 0.78, p < 0.001). Bland-Altman analysis revealed poor agreement (bias = −15 mL/100 g/min, lower and upper limits of agreements = −16 and 45 mL/100 g/min, respectively) with a negative relationship. Accounting for the negative relationship, the width of the limits of agreement could be narrowed from 61 mL/100 g/min to 35 mL/100 g/min using regression-based limits of agreements. Although a high correlation between CBFASL and CBFPET was found, the agreement in absolute CBF values was not sufficient for ASL to be used interchangeably with 15O-water PET.
  •  
7.
  • Fahlström, Markus, et al. (författare)
  • High Intravascular Signal Arterial Transit Time Artifacts Have Negligible Effects on Cerebral Blood Flow and Cerebrovascular Reserve Capacity Measurement Using Single Postlabel Delay Arterial Spin-Labeling in Patients with Moyamoya Disease
  • 2020
  • Ingår i: American Journal of Neuroradiology. - 0195-6108 .- 1936-959X. ; 41:3, s. 430-436
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: Arterial spin-labeling-derived CBF values may be affected by arterial transit time artefacts. Thus, our aim was to assess to what extent arterial spin-labeling–derived CBF and cerebrovascular reserve capacity values in major vascular regions are overestimated due to the arterial transit time artifacts in patients with Moyamoya disease.MATERIALS AND METHODS: Eight patients with Moyamoya disease were included before or after revascularization surgery. CBF maps were acquired using a 3D pseudocontinuous arterial spin-labeling sequence, before and 5, 15, and 25 minutes after an IV acetazolamide injection and were registered to each patient’s 3D-T1-weighted images. Vascular regions were defined by spatial normalization to a Montreal Neurological Institute–based vascular regional template. The arterial transit time artifacts were defined as voxels with high signal intensity corresponding to the right tail of the histogram for a given vascular region, with the cutoff selected by visual inspection. Arterial transit time artifact maps were created and applied as masks to exclude arterial transit time artifacts on CBF maps, to create corrected CBF maps. The cerebrovascular reserve capacity was calculated as CBF after acetazolamide injection relative to CBF at baseline for corrected and uncorrected CBF values, respectively.RESULTS: A total of 16 examinations were analyzed. Arterial transit time artifacts were present mostly in the MCA, whereas the posterior cerebral artery was generally unaffected. The largest differences between corrected and uncorrected CBF and cerebrovascular reserve capacity values, reported as patient group average ratio and percentage point difference, respectively, were 0.978 (95% CI, 0.968–0.988) and 1.8 percentage points (95% CI, 0.3–3.2 percentage points). Both were found in the left MCA, 15 and 5 minutes post-acetazolamide injection, respectively.CONCLUSIONS: Arterial transit time artifacts have negligible overestimation effects on calculated vascular region-based CBF and cerebrovascular reserve capacity values derived from single-delay 3D pseudocontinuous arterial spin-labeling.
  •  
8.
  • Fahlström, Markus, et al. (författare)
  • Pacemaker ingen absolut kontraindikation för MR-undersökning.
  • 2017
  • Ingår i: Läkartidningen. - 0023-7205 .- 1652-7518. ; 114
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiac implantable electronic devices (CIED) not an absolute contraindication to MRI Conventional cardiac implantable electronic devices (CIED) are presently not an absolute contraindication to magnetic resonance imaging (MRI), which thus is accessible for device patients depending on risk/benefit assessments. While current literature suggests that MRI can be performed without risk if precautions are taken, adverse events have been reported. The number of MR conditional CIEDs is rapidly increasing, and depending on device and electrode combinations, patients can now undergo advanced MRI at 3.0 T without risk, possibly with restriction, e.g. anatomy coverage. This article describes published guidelines, recommendations and complications that may appear during MRI and precautions to avoid and manage them. The recommendations made are based on a thorough literature review and our own experiences reported with the aim to increase the awareness of healthcare professionals so that device patients no longer are excluded from the advantages of MRI as a diagnostic tool.
  •  
9.
  • Fahlström, Markus, et al. (författare)
  • Perfusion magnetic resonance imaging changes in normal appearing brain tissue after radiotherapy in glioblastoma patients may confound longitudinal evaluation of treatment response
  • 2018
  • Ingår i: Radiology and Oncology. - : Walter de Gruyter. - 1318-2099 .- 1581-3207. ; 52:2, s. 143-151
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The aim of this study was assess acute and early delayed radiation-induced changes in normal-appearing brain tissue perfusion as measured with perfusion magnetic resonance imaging (MRI) and the dependence of these changes on the fractionated radiotherapy (FRT) dose level.Patients and methods: Seventeen patients with glioma WHO grade III-IV treated with FRT were included in this prospective study, seven were excluded because of inconsistent FRT protocol or missing examinations. Dynamic susceptibility contrast MRI and contrast-enhanced 3D-T1-weighted (3D-T1w) images were acquired prior to and in average (standard deviation): 3.1 (3.3), 34.4 (9.5) and 103.3 (12.9) days after FRT. Pre-FRT 3D-T1w images were segmented into white-and grey matter. Cerebral blood volume (CBV) and cerebral blood flow (CBF) maps were calculated and co-registered patient-wise to pre-FRT 3D-T1w images. Seven radiation dose regions were created for each tissue type: 0-5 Gy, 5-10 Gy, 10-20 Gy, 20-30 Gy, 30-40 Gy, 40-50 Gy and 50-60 Gy. Mean CBV and CBF were calculated in each dose region and normalised (nCBV and nCBF) to the mean CBV and CBF in 0-5 Gy white-and grey matter reference regions, respectively.Results: Regional and global nCBV and nCBF in white-and grey matter decreased after FRT, followed by a tendency to recover. The response of nCBV and nCBF was dose-dependent in white matter but not in grey matter.Conclusions: Our data suggest that radiation-induced perfusion changes occur in normal-appearing brain tissue after FRT. This can cause an overestimation of relative tumour perfusion using dynamic susceptibility contrast MRI, and can thus confound tumour treatment evaluation.
  •  
10.
  • Fahlström, Markus (författare)
  • Perfusion MRI of the brain after radiotherapy in patients with glioblastoma – potential and problems
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Perfusion Magnetic Resonance Imaging (MRI) is a useful tool in diagnostic evaluation and treatment response assessment in patients with glioblastoma. The standard treatment regimen includes surgical resection, radiotherapy and adjuvant chemotherapy. However, prognosis is poor; relative 5-year survival is 3–5%. Radiotherapy sequelae may have considerable negative effects on the patients’ quality of life. Acute and early delayed radiation-induced injury is primarily considered damage to the cerebral vascular tissue. The general aim of this study was to evaluate how perfusion MRI evaluation, based on contrast agent administration (DSC- and DCE-MRI), is affected by or can be useful to assess radiation-induced changes in normal appearing brain tissue in patients with glioblastoma after radiotherapy. Paper I: Dynamic Susceptibility Contrast (DSC)-MRI is a common perfusion MRI method in clinical practice in patients with glioblastoma. Due to inherent limitations, cerebral blood volume (CBV) and cerebral blood flow (CBF) derived from DSC-MRI are normalized to contralateral normal appearing white matter. Ten patients with glioblastoma were examined. Regional and global normalized CBV and normalized CBF in white and gray matter decreased after radiotherapy, followed by a tendency to recover. The response of nCBV and nCBF was dose-dependent in white matter but not in gray matter. In conclusion, radiotherapy effects on normal appearing white matter can confound treatment evaluation with DSC-MRI in patients with glioblastoma. Paper II: Dynamic Contrast Enhanced (DCE)-MRI may be useful in evaluating radiation-induced damage in normal appearing brain tissue.  DCE-MRI-derived parameters, vascular permeability (Ktrans) and the fractional volume of the extravascular extracellular space (Ve) are potential biomarkers. Twelve patients with glioblastoma were examined. A tendency toward increased Ktrans and Ve was seen, suggesting that these parameters may act as potential biomarkers for acute and early delayed radiation-induced vascular damage
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24
Typ av publikation
tidskriftsartikel (19)
annan publikation (2)
konferensbidrag (2)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (18)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Larsson, Elna-Marie (23)
Antoni, Gunnar (6)
Smits, Anja (6)
Marklund, Niklas (5)
Lubberink, Mark (5)
visa fler...
Wall, Anders (4)
Zetterling, Maria (4)
Wikström, Johan, 196 ... (3)
Tegner, Yelverton, P ... (3)
Nyholm, Tufve (3)
van Westen, Danielle (3)
Haller, Sven (3)
Johansson, Jakob (3)
Lätt, Jimmy (3)
Berntsson, Shala G., ... (3)
Appel, Lieuwe (2)
Kumlien, Eva (2)
Alafuzoff, Irina (2)
Enblad, Per (2)
Lewén, Anders, 1965- (2)
Dhara, Ashis Kumar (2)
Strand, Robin, 1978- (2)
Engström, Mathias (2)
Blomquist, Erik (2)
Ryttlefors, Mats (2)
Virhammar, Johan (1)
Ahlström, Håkan, 195 ... (1)
Lind, Lars (1)
Wikström, Johan (1)
Nilsson, Markus (1)
Blennow, Kaj (1)
Kullberg, Joel, 1979 ... (1)
Blomström-Lundqvist, ... (1)
Libard, Sylwia (1)
Wikström, Johan, Pro ... (1)
Melin, Beatrice (1)
Zetterberg, Henrik (1)
Laurell, Katarina (1)
Falk, Anna (1)
Larsson, Henrik B W (1)
Latini, Francesco, P ... (1)
Ayyalasomayajula, Ka ... (1)
Kremer, Berry (1)
Morell, Arvid (1)
Åberg, Karin (1)
Nylander, Ruta (1)
Berntsson, Shala (1)
Grabowska, Anna (1)
Berntsson, Shala Gha ... (1)
visa färre...
Lärosäte
Uppsala universitet (24)
Lunds universitet (4)
Umeå universitet (3)
Luleå tekniska universitet (3)
Göteborgs universitet (2)
Karolinska Institutet (2)
Språk
Engelska (23)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (19)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy