SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larsson Helena) ;pers:(Akolkar Beena)"

Sökning: WFRF:(Larsson Helena) > Akolkar Beena

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aronsson, Carin Andrén, et al. (författare)
  • Dietary Intake and Body Mass Index Influence the Risk of Islet Autoimmunity in Genetically At-Risk Children : A Mediation Analysis Using the TEDDY Cohort
  • 2023
  • Ingår i: Pediatric Diabetes. - : Hindawi Limited. - 1399-543X .- 1399-5448. ; 2023
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Objective: Growth and obesity have been associated with increased risk of islet autoimmunity (IA) and progression to type 1 diabetes. We aimed to estimate the effect of energy-yielding macronutrient intake on the development of IA through BMI. Research Design and Methods: Genetically at-risk children (n = 5,084) in Finland, Germany, Sweden, and the USA, who were autoantibody negative at 2 years of age, were followed to the age of 8 years, with anthropometric measurements and 3-day food records collected biannually. Of these, 495 (9.7%) children developed IA. Mediation analysis for time-varying covariates (BMI z-score) and exposure (energy intake) was conducted. Cox proportional hazard method was used in sensitivity analysis. Results: We found an indirect effect of total energy intake (estimates: indirect effect 0.13 [0.05, 0.21]) and energy from protein (estimates: indirect effect 0.06 [0.02, 0.11]), fat (estimates: indirect effect 0.03 [0.01, 0.05]), and carbohydrates (estimates: indirect effect 0.02 [0.00, 0.04]) (kcal/day) on the development of IA. A direct effect was found for protein, expressed both as kcal/day (estimates: direct effect 1.09 [0.35, 1.56]) and energy percentage (estimates: direct effect 72.8 [3.0, 98.0]) and the development of GAD autoantibodies (GADA). In the sensitivity analysis, energy from protein (kcal/day) was associated with increased risk for GADA, hazard ratio 1.24 (95% CI: 1.09, 1.53), p = 0.042. Conclusions: This study confirms that higher total energy intake is associated with higher BMI, which leads to higher risk of the development of IA. A diet with larger proportion of energy from protein has a direct effect on the development of GADA.
  •  
2.
  • Elding Larsson, Helena, et al. (författare)
  • Pandemrix® vaccination is not associated with increased risk of islet autoimmunity or type 1 diabetes in the TEDDY study children
  • 2018
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 61:1, s. 193-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: During the A/H1N1 2009 (A/California/04/2009) pandemic, mass vaccination with a squalene-containing vaccine, Pandemrix®, was performed in Sweden and Finland. The vaccination was found to cause narcolepsy in children and young adults with the HLA-DQ 6.2 haplotype. The aim of this study was to investigate if exposure to Pandemrix® similarly increased the risk of islet autoimmunity or type 1 diabetes. Methods: In The Environmental Determinants of Diabetes in the Young (TEDDY) study, children are followed prospectively for the development of islet autoimmunity and type 1 diabetes. In October 2009, when the mass vaccination began, 3401 children at risk for islet autoimmunity and type 1 diabetes were followed in Sweden and Finland. Vaccinations were recorded and autoantibodies against insulin, GAD65 and insulinoma-associated protein 2 were ascertained quarterly before the age of 4 years and semi-annually thereafter. Results: By 5 August 2010, 2413 of the 3401 (71%) children observed as at risk for an islet autoantibody or type 1 diabetes on 1 October 2009 had been vaccinated with Pandemrix®. By 31 July 2016, 232 children had at least one islet autoantibody before 10 years of age, 148 had multiple islet autoantibodies and 96 had developed type 1 diabetes. The risk of islet autoimmunity was not increased among vaccinated children. The HR (95% CI) for the appearance of at least one islet autoantibody was 0.75 (0.55, 1.03), at least two autoantibodies was 0.85 (0.57, 1.26) and type 1 diabetes was 0.67 (0.42, 1.07). In Finland, but not in Sweden, vaccinated children had a lower risk of islet autoimmunity (0.47 [0.29, 0.75]), multiple autoantibodies (0.50 [0.28, 0.90]) and type 1 diabetes (0.38 [0.20, 0.72]) compared with those who did not receive Pandemrix®. The analyses were adjusted for confounding factors. Conclusions/interpretation: Children with an increased genetic risk for type 1 diabetes who received the Pandemrix® vaccine during the A/H1N1 2009 pandemic had no increased risk of islet autoimmunity, multiple islet autoantibodies or type 1 diabetes. In Finland, the vaccine was associated with a reduced risk of islet autoimmunity and type 1 diabetes.
  •  
3.
  • Haghighi, Mona, et al. (författare)
  • A Comparison of Rule-based Analysis with Regression Methods in Understanding the Risk Factors for Study Withdrawal in a Pediatric Study
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Regression models are extensively used in many epidemiological studies to understand the linkage between specific outcomes of interest and their risk factors. However, regression models in general examine the average effects of the risk factors and ignore subgroups with different risk profiles. As a result, interventions are often geared towards the average member of the population, without consideration of the special health needs of different subgroups within the population. This paper demonstrates the value of using rule-based analysis methods that can identify subgroups with heterogeneous risk profiles in a population without imposing assumptions on the subgroups or method. The rules define the risk pattern of subsets of individuals by not only considering the interactions between the risk factors but also their ranges. We compared the rule-based analysis results with the results from a logistic regression model in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Both methods detected a similar suite of risk factors, but the rule-based analysis was superior at detecting multiple interactions between the risk factors that characterize the subgroups. A further investigation of the particular characteristics of each subgroup may detect the special health needs of the subgroup and lead to tailored interventions.
  •  
4.
  • Jacobsen, Laura M., et al. (författare)
  • Heterogeneity of DKA Incidence and Age-Specific Clinical Characteristics in Children Diagnosed With Type 1 Diabetes in the TEDDY Study
  • 2022
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992. ; 45:3, s. 624-633
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE The Environmental Determinants of Diabetes in the Young (TEDDY) study is uniquely capable of investigating age-specific differences associated with type 1 diabetes. Because age is a primary driver of heterogeneity in type 1 diabetes, we sought to characterize by age metabolic derangements prior to diagnosis and clinical features associated with diabetic ketoacidosis (DKA). RESEARCH DESIGN AND METHODS The 379 TEDDY children who developed type 1 diabetes were grouped by age at onset (0–4, 5–9, and 10–14 years; n = 142, 151, and 86, respectively) with com-parisons of autoantibody profiles, HLAs, family history of diabetes, presence of DKA, symptomatology at onset, and adherence to TEDDY protocol. Time-varying analysis compared those with oral glucose tolerance test data with TEDDY children who did not progress to diabetes. RESULTS Increasing fasting glucose (hazard ratio [HR] 1.09 [95% CI 1.04–1.14]; P = 0.0003), stimulated glucose (HR 1.50 [1.42–1.59]; P < 0.0001), fasting insulin (HR 0.89 [0.83–0.95]; P = 0.0009), and glucose-to-insulin ratio (HR 1.29 [1.16–1.43]; P < 0.0001) were associated with risk of progression to type 1 diabetes. Younger children had fewer autoantibodies with more symptoms at diagnosis. Twenty-three children (6.1%) had DKA at onset, only 1 (0.97%) of 103 with and 22 (8.0%) of 276 children without a first-degree relative (FDR) with type 1 diabetes (P = 0.008). Children with DKA were more likely to be nonadherent to study protocol (P = 0.047), with longer duration between their last TEDDY evaluation and diagnosis (median 10.2 vs. 2.0 months without DKA; P < 0.001). CONCLUSIONS DKA at onset in TEDDY is uncommon, especially for FDRs. For those without familial risk, metabolic monitoring continues to provide a primary benefit of reduced DKA but requires regular follow-up. Clinical and laboratory features vary by age at onset, adding to the heterogeneity of type 1 diabetes.
  •  
5.
  • Jacobsen, Laura M., et al. (författare)
  • Predicting progression to type 1 diabetes from ages 3 to 6 in islet autoantibody positive TEDDY children
  • 2019
  • Ingår i: Pediatric Diabetes. - : Hindawi Limited. - 1399-543X .- 1399-5448. ; 20:3, s. 263-270
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The capacity to precisely predict progression to type 1 diabetes (T1D) in young children over a short time span is an unmet need. We sought to develop a risk algorithm to predict progression in children with high-risk human leukocyte antigen (HLA) genes followed in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Methods: Logistic regression and 4-fold cross-validation examined 38 candidate predictors of risk from clinical, immunologic, metabolic, and genetic data. TEDDY subjects with at least one persistent, confirmed autoantibody at age 3 were analyzed with progression to T1D by age 6 serving as the primary endpoint. The logistic regression prediction model was compared to two non-statistical predictors, multiple autoantibody status, and presence of insulinoma-associated-2 autoantibodies (IA-2A). Results: A total of 363 subjects had at least one autoantibody at age 3. Twenty-one percent of subjects developed T1D by age 6. Logistic regression modeling identified 5 significant predictors - IA-2A status, hemoglobin A1c, body mass index Z-score, single-nucleotide polymorphism rs12708716_G, and a combination marker of autoantibody number plus fasting insulin level. The logistic model yielded a receiver operating characteristic area under the curve (AUC) of 0.80, higher than the two other predictors; however, the differences in AUC, sensitivity, and specificity were small across models. Conclusions: This study highlights the application of precision medicine techniques to predict progression to diabetes over a 3-year window in TEDDY subjects. This multifaceted model provides preliminary improvement in prediction over simpler prediction tools. Additional tools are needed to maximize the predictive value of these approaches.
  •  
6.
  • Kemppainen, Kaisa M, et al. (författare)
  • Association Between Early-Life Antibiotic Use and the Risk of Islet or Celiac Disease Autoimmunity
  • 2017
  • Ingår i: JAMA Pediatrics. - : American Medical Association (AMA). - 2168-6211 .- 2168-6203. ; 171:12, s. 1217-1225
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Evidence is lacking regarding the consequences of antibiotic use in early life and the risk of certain autoimmune diseases.Objective: To test the association between early-life antibiotic use and islet or celiac disease (CD) autoimmunity in genetically at-risk children prospectively followed up for type 1 diabetes (T1D) or CD.Design, Setting, and Participants: HLA-genotyped newborns from Finland, Germany, Sweden, and the United States were enrolled in the prospective birth cohort of The Environmental Determinants of Diabetes in the Young (TEDDY) study between November 20, 2004, and July 8, 2010. The dates of analysis were November 20, 2004, to August 31, 2014. Individuals from the general population and those having a first-degree relative with T1D were enrolled if they had 1 of 9 HLA genotypes associated with a risk for T1D.Exposures: Parental reports of the most common antibiotics (cephalosporins, penicillins, and macrolides) used between age 3 months and age 4 years were recorded prospectively.Main Outcomes and Measures: Islet autoimmunity and CD autoimmunity were defined as being positive for islet or tissue transglutaminase autoantibodies at 2 consecutive clinic visits at least 3 months apart. Hazard ratios and 95% CIs calculated from Cox proportional hazards regression models were used to assess the relationship between antibiotic use in early life before seroconversion and the development of autoimmunity.Results: Participants were 8495 children (49.0% female) and 6558 children (48.7% female) enrolled in the TEDDY study who were tested for islet and tissue transglutaminase autoantibodies, respectively. Exposure to and frequency of use of any antibiotic assessed in this study in early life or before seroconversion did not influence the risk of developing islet autoimmunity or CD autoimmunity. Cumulative use of any antibiotic during the first 4 years of life was not associated with the appearance of any autoantibody (hazard ratio [HR], 0.98; 95% CI, 0.95-1.01), multiple islet autoantibodies (HR, 0.99; 95% CI, 0.95-1.03), or the transglutaminase autoantibody (HR, 1.00; 95% CI, 0.98-1.02).Conclusions and Relevance: The use of the most prescribed antibiotics during the first 4 years of life, regardless of geographic region, was not associated with the development of autoimmunity for T1D or CD. These results suggest that a risk of islet or tissue transglutaminase autoimmunity need not influence the recommendations for clinical use of antibiotics in young children at risk for T1D or CD.
  •  
7.
  • Krischer, Jeffrey P, et al. (författare)
  • Predicting Islet Cell Autoimmunity and Type 1 Diabetes : An 8-Year TEDDY Study Progress Report
  • 2019
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 42:6, s. 1051-1060
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Assessment of the predictive power of The Environmental Determinants of Diabetes in the Young (TEDDY)-identified risk factors for islet autoimmunity (IA), the type of autoantibody appearing first, and type 1 diabetes (T1D).RESEARCH DESIGN AND METHODS: A total of 7,777 children were followed from birth to a median of 9.1 years of age for the development of islet autoantibodies and progression to T1D. Time-dependent sensitivity, specificity, and receiver operating characteristic (ROC) curves were calculated to provide estimates of their individual and collective ability to predict IA and T1D.RESULTS: HLA genotype (DR3/4 vs. others) was the best predictor for IA (Youden's index J = 0.117) and single nucleotide polymorphism rs2476601, in PTPN22, was the best predictor for insulin autoantibodies (IAA) appearing first (IAA-first) (J = 0.123). For GAD autoantibodies (GADA)-first, weight at 1 year was the best predictor (J = 0.114). In a multivariate model, the area under the ROC curve (AUC) was 0.678 (95% CI 0.655, 0.701), 0.707 (95% CI 0.676, 0.739), and 0.686 (95% CI 0.651, 0.722) for IA, IAA-first, and GADA-first, respectively, at 6 years. The AUC of the prediction model for T1D at 3 years after the appearance of multiple autoantibodies reached 0.706 (95% CI 0.649, 0.762).CONCLUSIONS: Prediction modeling statistics are valuable tools, when applied in a time-until-event setting, to evaluate the ability of risk factors to discriminate between those who will and those who will not get disease. Although significantly associated with IA and T1D, the TEDDY risk factors individually contribute little to prediction. However, in combination, these factors increased IA and T1D prediction substantially.
  •  
8.
  • Larsson, Helena, et al. (författare)
  • Children followed in the TEDDY study are diagnosed with type 1 diabetes at an early stage of disease.
  • 2014
  • Ingår i: Pediatric Diabetes. - : Hindawi Limited. - 1399-543X. ; 15:2, s. 118-126
  • Tidskriftsartikel (refereegranskat)abstract
    • The Environmental Determinants of Diabetes in the Young (TEDDY) study is designed to identify environmental exposures triggering islet autoimmunity and type 1 diabetes (T1D) in genetically high-risk children. We describe the first 100 participants diagnosed with T1D, hypothesizing that (i) they are diagnosed at an early stage of disease, (ii) a high proportion are diagnosed by an oral glucose tolerance test (OGTT), and (iii) risk for early T1D is related to country, population, human leukocyte antigen (HLA)-genotypes and immunological markers.
  •  
9.
  • Larsson, Helena Elding, et al. (författare)
  • Growth and risk for islet autoimmunity and progression to type 1 diabetes in early childhood : The environmental determinants of diabetes in the young study
  • 2016
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 65:7, s. 1988-1995
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased growth in early childhood has been suggested to increase the risk of type 1 diabetes. This study explored the relationship between weight or height and development of persistent islet autoimmunity and progression to type 1 diabetes during the first 4 years of life in 7,468 children at genetic risk for type 1 diabetes followed in Finland, Germany, Sweden, and the U.S. Growth data collected every third month were used to estimate individual growth curves by mixed models. Cox proportional hazards models were used to evaluate body size and risk of islet autoimmunity and type 1 diabetes. In the overall cohort, development of islet autoimmunity (n = 575) was related to weight z scores at 12 months (hazard ratio [HR] 1.16 per 1.14 kg in males or per 1.02 kg in females, 95% CI 1.06-1.27, P <0.001, false discovery rate [FDR] = 0.008) but not at 24 or 36 months. A similar relationship was seen between weight z scores and development of multiple islet autoantibodies (1 year: HR 1.21, 95% CI 1.08-1.35, P = 0.001, FDR = 0.008; 2 years: HR 1.18, 95% CI 1.06-1.32, P = 0.004, FDR = 0.02). No association was found between weight or height and type 1 diabetes (n = 169). In conclusion, greater weight in the first years of life was associated with an increased risk of islet autoimmunity.
  •  
10.
  • Liu, Xiang, et al. (författare)
  • Distinct growth phases in early life associated with the risk of type 1 diabetes : The teddy study
  • 2020
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 43:3, s. 556-562
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE This study investigates two-phase growth patterns in early life and their association with development of islet autoimmunity (IA) and type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS The Environmental Determinants of Diabetes in the Young (TEDDY) study followed 7,522 genetically high-risk children in Sweden, Finland, Germany, and the U.S. from birth for a median of 9.0 years (interquartile range 5.7–10.6) with available growth data. Of these, 761 (10.1%) children developed IA and 290 (3.9%) children were diagnosed with T1D. Bayesian two-phase piecewise linear mixed models with a random change point were used to estimate children’s individual growth trajectories. Cox proportional hazards models were used to assess the effects of associated growth parameters on the risks of IA and progression to T1D. RESULTS A higher rate of weight gain in infancy was associated with increased IA risk (hazard ratio [HR] 1.09 [95% CI 1.02, 1.17] per 1 kg/year). A height growth pattern with a lower rate in infancy (HR 0.79 [95% CI 0.70, 0.90] per 1 cm/year), higher rate in early childhood (HR 1.48 [95% CI 1.22, 1.79] per 1 cm/year), and younger age at the phase transition (HR 0.76 [95% CI 0.58, 0.99] per 1 month) was associated with increased risk of progression from IA to T1D. A higher rate of weight gain in early childhood was associated with increased risk of progression from IA to T1D (HR 2.57 [95% CI 1.34, 4.91] per 1 kg/year) in children with first-appearing GAD autoantibody only. CONCLUSIONS Growth patterns in early life better clarify how specific growth phases are associated with the development of T1D.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy