SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larsson Rolf) ;mspu:(article);pers:(Senkowski Wojciech)"

Sökning: WFRF:(Larsson Rolf) > Tidskriftsartikel > Senkowski Wojciech

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blom, Kristin, et al. (författare)
  • The anticancer effect of mebendazole may be due to M1 monocyte/macrophage activation via ERK1/2 and TLR8-dependent inflammasome activation
  • 2017
  • Ingår i: Immunopharmacology and immunotoxicology. - : Informa UK Limited. - 0892-3973 .- 1532-2513. ; 39:4, s. 199-210
  • Tidskriftsartikel (refereegranskat)abstract
    • Mebendazole (MBZ), a drug commonly used for helminitic infections, has recently gained substantial attention as a repositioning candidate for cancer treatment. However, the mechanism of action behind its anticancer activity remains unclear. To address this problem, we took advantage of the curated MBZ-induced gene expression signatures in the LINCS Connectivity Map (CMap) database. The analysis revealed strong negative correlation with MEK/ERK1/2 inhibitors. Moreover, several of the most upregulated genes in response to MBZ exposure were related to monocyte/macrophage activation. The MBZ-induced gene expression signature in the promyeloblastic HL-60 cell line was strongly enriched in genes involved in monocyte/macrophage pro-inflammatory (M1) activation. This was subsequently validated using MBZ-treated THP-1 monocytoid cells that demonstrated gene expression, surface markers and cytokine release characteristic of the M1 phenotype. At high concentrations MBZ substantially induced the release of IL-1 beta and this was further potentiated by lipopolysaccharide (LPS). At low MBZ concentrations, cotreatment with LPS was required for MBZ-stimulated IL-1 beta secretion to occur. Furthermore, we show that the activation of protein kinase C, ERK1/2 and NF-kappaB were required for MBZ-induced IL-1 release. MBZ-induced IL-1 release was found to be dependent on NLRP3 inflammasome activation and to involve TLR8 stimulation. Finally, MBZ induced tumor-suppressive effects in a coculture model with differentiated THP-1 macrophages and HT29 colon cancer cells. In summary, we report that MBZ induced a pro-inflammatory (M1) phenotype of monocytoid cells, which may, at least partly, explain MBZ's anticancer activity observed in animal tumor models and in the clinic.
  •  
2.
  • Fryknäs, Mårten, et al. (författare)
  • Iron chelators target both proliferating and quiescent cancer cells
  • 2016
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Poorly vascularized areas of solid tumors contain quiescent cell populations that are resistant to cell cycle-active cancer drugs. The compound VLX600 was recently identified to target quiescent tumor cells and to inhibit mitochondrial respiration. We here performed gene expression analysis in order to characterize the cellular response to VLX600. The compound-specific signature of VLX600 revealed a striking similarity to signatures generated by compounds known to chelate iron. Validation experiments including addition of ferrous and ferric iron in excess, EXAFS measurements, and structure activity relationship analyses showed that VLX600 chelates iron and supported the hypothesis that the biological effects of this compound is due to iron chelation. Compounds that chelate iron possess anti-cancer activity, an effect largely attributed to inhibition of ribonucleotide reductase in proliferating cells. Here we show that iron chelators decrease mitochondrial energy production, an effect poorly tolerated by metabolically stressed tumor cells. These pleiotropic features make iron chelators an attractive option for the treatment of solid tumors containing heterogeneous populations of proliferating and quiescent cells.
  •  
3.
  • Karlsson, Henning, et al. (författare)
  • A novel tumor spheroid model identifies selective enhancement of radiation by an inhibitor of oxidative phosphorylation
  • 2019
  • Ingår i: Oncotarget. - Orchard Park, NY United States : Impact Journals. - 1949-2553. ; 10:51, s. 5372-5382
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a need for preclinical models that can enable identification of novel radiosensitizing drugs in clinically relevant high-throughput experiments. We used a new high-throughput compatible total cell kill spheroid assay to study the interaction between drugs and radiation in order to identify compounds with radiosensitizing activity. Experimental drugs were compared to known radiosensitizers and cytotoxic drugs clinically used in combination with radiotherapy. VLX600, a novel iron-chelating inhibitor of oxidative phosphorylation, potentiated the effect of radiation in tumor spheroids in a synergistic manner. This effect was specific to spheroids and not observed in monolayer cell cultures. In conclusion, the total cell kill spheroid assay is a feasible high-throughput method in the search for novel radiosensitizers. VLX600 shows encouraging characteristics for development as a novel radiosensitizer.
  •  
4.
  • Karlsson, Henning, et al. (författare)
  • Selective radiosensitization by nitazoxanide of quiescent clonogenic colon cancer tumour cells
  • 2022
  • Ingår i: Oncology Letters. - : Spandidos Publications. - 1792-1074 .- 1792-1082. ; 23:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitazoxanide is a Food and Drug Administration-approved antiprotozoal drug recently demonstrated to be selectively active against quiescent and glucose-deprived tumour cells. This drug also has several characteristics that suggest its potential as a radiosensitizer. The present study aimed to investigate the interaction between nitazoxanide and radiation on human colon cancer cells cultured as monolayers, and to mimic key features of solid tumours in patients, as spheroids, as well as in xenografts in mice. In the present study, colon cancer HCT116 green fluorescent protein (GFP) cells were exposed to nitazoxanide, radiation or their combination. Cell survival was analysed by using total cell kill and clonogenic assays. DNA double-strand breaks were evaluated in the spheroid experiments, and HCT116 GFP cell xenograft tumours in mice were used to investigate the effect of nitazoxanide and radiation in vivo. In the clonogenic assay, nitazoxanide synergistically and selectively sensitized cells grown as spheroids to radiation. However, this was not observed in cells cultured as monolayers, as demonstrated in the total cell kill assays, and much less with the clinically established sensitizer 5-fluorouracil. The sensitizing effect from nitazoxanide was confirmed via spheroid gamma-H2A histone family member X staining. Nitazoxanide and radiation alone similarly inhibited the growth of HCT116 GFP cell xenograft tumours in mice with no evidence of synergistic interaction. In conclusion, nitazoxanide selectively targeted quiescent glucose-deprived tumour cells and sensitized these cells to radiation in vitro. Nitazoxanide also inhibited tumour growth in vivo. Thus, nitazoxanide is a candidate for repurposing into an anticancer drug, including its use as a radiosensitizer.
  •  
5.
  •  
6.
  • Kashif, Muhammad, et al. (författare)
  • In vitro discovery of promising anti-cancer drug combinations using iterative maximisation of a therapeutic index
  • 2015
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • In vitro-based search for promising anti-cancer drug combinations may provide important leads to improved cancer therapies. Currently there are no integrated computational-experimental methods specifically designed to search for combinations, maximizing a predefined therapeutic index (TI) defined in terms of appropriate model systems. Here, such a pipeline is presented allowing the search for optimal combinations among an arbitrary number of drugs while also taking experimental variability into account. The TI optimized is the cytotoxicity difference (in vitro) between a target model and an adverse side effect model. Focusing on colorectal carcinoma (CRC), the pipeline provided several combinations that are effective in six different CRC models with limited cytotoxicity in normal cell models. Herein we describe the identification of the combination (Trichostatin A, Afungin, 17-AAG) and present results from subsequent characterisations, including efficacy in primary cultures of tumour cells from CRC patients. We hypothesize that its effect derives from potentiation of the proteotoxic action of 17-AAG by Trichostatin A and Afungin. The discovered drug combinations against CRC are significant findings themselves and also indicate that the proposed strategy has great potential for suggesting drug combination treatments suitable for other cancer types as well as for other complex diseases.
  •  
7.
  • Nazir, Madiha, et al. (författare)
  • Targeting tumor cells based on Phosphodiesterase 3A expression
  • 2017
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 0014-4827 .- 1090-2422. ; 361:2, s. 308-315
  • Tidskriftsartikel (refereegranskat)abstract
    • We and others have previously reported a correlation between high phosphodiesterase 3 A (PDE3A) expression and selective sensitivity to phosphodiesterase (PDE) inhibitors. This indicates that PDE3A could serve both as a drug target and a biomarker of sensitivity to PDE3 inhibition. In this report, we explored publicly available mRNA gene expression data to identify cell lines with different PDE3A expression. Cell lines with high PDE3A expression showed marked in vitro sensitivity to PDE inhibitors zardaverine and quazinone, when compared with those having low PDE3A expression. Immunofluorescence and immunohistochemical stainings were in agreement with PDE3A mRNA expression, providing suitable alternatives for biomarker analysis of clinical tissue specimens. Moreover, we here demonstrate that tumor cells from patients with ovarian carcinoma show great variability in PDE3A protein expression and that level of PDE3A expression is correlated with sensitivity to PDE inhibition. Finally, we demonstrate that PDE3A is highly expressed in subsets of patient tumor cell samples from different solid cancer diagnoses and expressed at exceptional levels in gastrointestinal stromal tumor (GIST) specimens. Importantly, vulnerability to PDE3 inhibitors has recently been associated with co-expression of PDE3A and Schlafen family member 12 (SLFN12). We here demonstrate that high expression of PDE3A in clinical specimens, at least on the mRNA level, seems to be frequently associated with high SLFIV12 expression. In conclusion, PDE3A seems to be both a promising biomarker and drug target for individualized drug treatment of various cancers.
  •  
8.
  • Nyberg, Frida, et al. (författare)
  • Sorafenib and nitazoxanide disrupt mitochondrial function and inhibit regrowth capacity in three-dimensional models of hepatocellular and colorectal carcinoma
  • 2022
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Quiescent cancer cells in malignant tumors can withstand cell-cycle active treatment and cause cancer spread and recurrence. Three-dimensional (3D) cancer cell models have led to the identification of oxidative phosphorylation (OXPHOS) as a context-dependent vulnerability. The limited treatment options for advanced hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) metastatic to the liver include the multikinase inhibitors sorafenib and regorafenib. Off-target effects of sorafenib and regorafenib are related to OXPHOS inhibition; however the importance of this feature to the effect on tumor cells has not been investigated in 3D models. We began by assessing global transcriptional responses in monolayer cell cultures, then moved on to multicellular tumor spheroids (MCTS) and tumoroids generated from a CRC patient. Cells were treated with chemotherapeutics, kinase inhibitors, and the OXPHOS inhibitors. Cells grown in 3D cultures were sensitive to the OXPHOS inhibitor nitazoxanide, sorafenib, and regorafenib and resistant to other multikinase inhibitors and chemotherapeutic drugs. Furthermore, nitazoxanide and sorafenib reduced viability, regrowth potential and inhibited mitochondrial membrane potential in an additive manner at clinically relevant concentrations. This study demonstrates that the OXPHOS inhibition caused by sorafenib and regorafenib parallels 3D activity and can be further investigated for new combination strategies.
  •  
9.
  •  
10.
  • Senkowski, Wojciech, et al. (författare)
  • Large-Scale Gene Expression Profiling Platform for Identification of Context-Dependent Drug Responses in Multicellular Tumor Spheroids
  • 2016
  • Ingår i: CELL CHEMICAL BIOLOGY. - : Elsevier BV. - 2451-9448 .- 2451-9456. ; 23:11, s. 1428-1438
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer cell lines grown as two-dimensional (2D) cultures have been an essential model for studying cancer biology and anticancer drug discovery. However, 2D cancer cell cultures have major limitations, as they do not closely mimic the heterogeneity and tissue context of in vivo tumors. Developing three-dimensional (3D) cell cultures, such as multicellular tumor spheroids, has the potential to address some of these limitations. Here, we combined a high-throughput gene expression profiling method with a tumor spheroid-based drug-screening assay to identify context-dependent treatment responses. As a proof of concept, we examined drug responses of quiescent cancer cells to oxidative phosphorylation (OXPHOS) inhibitors. Use of multicellular tumor spheroids led to discovery that the mevalonate pathway is upregulated in quiescent cells during OXPHOS inhibition, and that OXPHOS inhibitors and mevalonate pathway inhibitors were synergistically toxic to quiescent spheroids. This work illustrates how 3D cellular models yield functional and mechanistic insights not accessible via 2D cultures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy