SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larsson Rolf) ;pers:(D'Arcy Padraig)"

Sökning: WFRF:(Larsson Rolf) > D'Arcy Padraig

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brnjic, Slavica, et al. (författare)
  • Induction of Tumor Cell Apoptosis by a Proteasome Deubiquitinase Inhibitor Is Associated with Oxidative Stress
  • 2014
  • Ingår i: Antioxidants and Redox Signaling. - : Mary Ann Liebert Inc. - 1523-0864 .- 1557-7716. ; 21:17, s. 2271-2285
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: b-AP15 is a recently described inhibitor of the USP14/UCHL5 deubiquitinases (DUBs) of the 19S proteasome. Exposure to b-AP15 results in blocking of proteasome function and accumulation of polyubiquitinated protein substrates in cells. This novel mechanism of proteasome inhibition may potentially be exploited for cancer therapy, in particular for treatment of malignancies resistant to currently used proteasome inhibitors. The aim of the present study was to characterize the cellular response to b-AP15-mediated proteasome DUB inhibition. Results: We report that b-AP15 elicits a similar, but yet distinct, cellular response as the clinically used proteasome inhibitor bortezomib. b-AP15 induces a rapid apoptotic response, associated with enhanced induction of oxidative stress and rapid activation of Jun-N-terminal kinase 1/2 (JNK)/activating protein-1 signaling. Scavenging of reactive oxygen species and pharmacological inhibition of JNK reduced b-AP15-induced apoptosis. We further report that endoplasmic reticulum (ER) stress is induced by b-AP15 and is involved in apoptosis induction. In contrast to bortezomib, ER stress is associated with induction of alpha-subunit of eukaryotic initiation factor 2 phosphorylation. Innovation: The findings establish that different modes of proteasome inhibition result in distinct cellular responses, a finding of potential therapeutic importance. Conclusion: Our data show that enhanced oxidative stress and ER stress are major determinants of the strong apoptotic response elicited by the 19S DUB inhibitor b-AP15. Antioxid. Redox Signal. 21, 2271-2285.
  •  
2.
  • D'Arcy, Pádraig, et al. (författare)
  • Inhibition of proteasome deubiquitinating activity as a novel cancer therapy
  • 2011
  • Ingår i: Nature Medicine. - Stockholm : Karolinska Institutet, Dept of Oncology-Pathology. - 1546-170X .- 1078-8956.
  • Tidskriftsartikel (refereegranskat)abstract
    • Ubiquitin-tagged substrates are degraded by the 26S proteasome, which is a multisubunit complex comprising a proteolytic 20S core particle capped by 19S regulatory particles. The approval of bortezomib for the treatment of multiple myeloma validated the 20S core particle as an anticancer drug target. Here we describe the small molecule b-AP15 as a previously unidentified class of proteasome inhibitor that abrogates the deubiquitinating activity of the 19S regulatory particle. b-AP15 inhibited the activity of two 19S regulatory-particle-associated deubiquitinases, ubiquitin C-terminal hydrolase 5 (UCHL5) and ubiquitin-specific peptidase 14 (USP14), resulting in accumulation of polyubiquitin. b-AP15 induced tumor cell apoptosis that was insensitive to TP53 status and overexpression of the apoptosis inhibitor BCL2. We show that treatment with b-AP15 inhibited tumor progression in four different in vivo solid tumor models and inhibited organ infiltration in an acute myeloid leukemia model. Our results show that the deubiquitinating activity of the 19S regulatory particle is a new anticancer drug target.
  •  
3.
  • Fayad, Walid, et al. (författare)
  • Identification of Agents that Induce Apoptosis of Multicellular Tumour Spheroids : Enrichment for Mitotic Inhibitors with Hydrophobic Properties
  • 2011
  • Ingår i: Chemical Biology and Drug Design. - : Wiley. - 1747-0277 .- 1747-0285. ; 78:4, s. 547-557
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-based anticancer drug screening generally utilizes rapidly proliferating tumour cells grown as monolayer cultures. Hit compounds from such screens are not necessarily effective on hypoxic and slowly proliferating cells in 3-D tumour tissue. The aim of this study was to examine the potential usefulness of 3-D cultured tumour cells for anticancer drug screening. We used colon carcinoma multicellular spheroids containing hypoxic and quiescent cells in core areas for this purpose. Three libraries (similar to 11 000 compounds) were screened using antiproliferative activity and/or apoptosis as end-points. Screening of monolayer and spheroid cultures was found to identify different sets of hit compounds. Spheroid screening enriched for hydrophobic compounds: median XLogP values of 4.3 and 4.4 were observed for the hits in two independent screening campaigns. Mechanistic analysis revealed that the majority of spheroid screening hits were microtubuli inhibitors. One of these inhibitors was examined in detail and found to be effective against non-dividing cells in the hypoxic centres of spheroids. Spheroid screening represents a conceptually new strategy for anticancer drug discovery. Our findings have implications for drug library design and hit selection in projects aimed to develop drugs for the treatment of solid tumours.
  •  
4.
  • Haglund, Caroline, et al. (författare)
  • Identification of an inhibitor of the ubiquitin-proteasome system that induces accumulation of polyubiquitinated proteins in the absence of blocking of proteasome function
  • 2014
  • Ingår i: MedChemComm. - : Royal Society of Chemistry (RSC). - 2040-2503 .- 2040-2511. ; 5:3, s. 376-385
  • Tidskriftsartikel (refereegranskat)abstract
    • The ubiquitin-proteasome system (UPS) represents one of the most promising therapeutic targets in oncology to emerge in recent years. Here we used a combination of cytotoxic and image-based screening assays to identify a novel UPS inhibitor, designated HRF-3. HRF-3 evokes a gene expression profile similar to that of other characterized ups inhibitors, suggesting a common mechanism of action. Consistent with UPS inhibition, HRF-3 induced strong accumulation of polyubiquitinated proteins in cells. Surprisingly, HRF-3 induced only weak accumulation of two proteasome targeted reporter proteins, Ub(G76V)-YFP and ZsGreen-ODC. Consistent with this observation, HRF-3 did not inhibit proteasome proteolytic activity in an in vitro assay. Similar to a number of other UPS inhibitors, HRF-3 increased the expression of the redox-inducible protein Hmox-1. In distinction to the 20S inhibitor bortezomib, but similarly to two different p97/VCP inhibitors. HRF-3 did not elicit strong induction of the chaperone Hsp70B'. Finally, we show that HRF-3 is cytotoxic to a variety of cancer cell lines and ex vivo patient tumour cells, with the strongest activity observed in cells of leukemic/myeloma origin. Taken together our data show that HRF-3 induces polyubiquitin accumulation in the absence of efficient proteasomal blocking, and suggest that induction of oxidative stress is a common denominator of UPS inhibitors.
  •  
5.
  • Hernlund, Emma, et al. (författare)
  • The phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 is effective in inhibiting regrowth of tumour cells after cytotoxic therapy
  • 2012
  • Ingår i: European Journal of Cancer. - : Elsevier BV. - 0959-8049 .- 1879-0852. ; 48:3, s. 396-406
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE:Regrowth of tumour cells between cycles of chemotherapy is a significant clinical problem. Treatment strategies where antiproliferative agents are used to inhibit tumour regrowth between chemotherapy cycles are attractive, but such strategies are difficult to test using conventional monolayer culture systems.METHODS:We used the in vitro tumour spheroid model to study regrowth of 3-D colon carcinoma tissue after cytotoxic therapy. Colon carcinoma cells with wild-type or mutant phosphatidyl inositol 3-kinase catalytic subunit (PI3KCA) or KRAS alleles were allowed to form multicellular spheroids and the effects of different pharmacological compounds were studied after sectioning and staining for relevant markers of cell proliferation and apoptosis.RESULTS:Studies using colon cancer cells with gene disruptions suggested that the phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathway was essential for proliferation in 3-D culture. The dual PI3K-mTOR inhibitor NVP-BEZ235, currently in clinical trials, was found to inhibit phosphorylation of the mTOR target 4EBP1 in 3-D cultured cells. The ability of NVP-BEZ235 to inhibit tumour cell proliferation and to induce apoptosis was markedly more pronounced in 3-D cultures compared to monolayer cultures. It was subsequently found that NVP-BEZ235 was effective in inhibiting regrowth of 3-D cultured cells after treatment with two cytotoxic inhibitors of the ubiquitin-proteasome system (UPS), methyl-13-hydroxy-15-oxokaurenoate (MHOK) and bortezomib (Velcade®).CONCLUSIONS:The dual PI3K-mTOR inhibitor NVP-BEZ235 was found to reduce cell proliferation and to induce apoptosis in 3-D cultured colon carcinoma cells, NVP-BEZ235 is a promising candidate for use in sequential treatment modalities together with cytotoxic drugs to reduce the cell mass of solid tumours.
  •  
6.
  • Jarvius, Malin, et al. (författare)
  • Piperlongumine induces inhibition of the ubiquitin-proteasome system in cancer cells
  • 2013
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 431:2, s. 117-123
  • Tidskriftsartikel (refereegranskat)abstract
    • Piperlongumine, a natural product from the plant Piper longum, has demonstrated selective cytotoxicity to tumor cells and to show anti-tumor activity in animal models [1]. Cytotoxicity of piperlongumine has been attributed to increase in reactive oxygen species (ROS) in cancer cells. We here report that piperlongumine is an inhibitor of the ubiquitin-proteasome system (UPS). Exposure of tumor cells to piperlongumine resulted in accumulation of a reporter substrate known to be rapidly degraded by the proteasome, and of accumulation of ubiquitin conjugated proteins. However, no inhibition of 20S proteolytic activity or 19S deubiquitinating activity was observed at concentrations inducing cytotoxicity. Consistent with previous reports, piperlongumine induced strong ROS activation which correlated closely with UPS inhibition and cytotoxicity. Proteasomal blocking could not be mimicked by agents that induce oxidative stress. Our results suggest that the anti-cancer activity of piperlongumine involves inhibition of the UPS at a pre-proteasomal step, prior to deubiquitination of malfolded protein substrates at the proteasome, and that the previously reported induction of ROS is a consequence of this inhibition. 
  •  
7.
  •  
8.
  • Wang, Xin, et al. (författare)
  • The 19S Deubiquitinase Inhibitor b-AP15 Is Enriched in Cells and Elicits Rapid Commitment to Cell Death
  • 2014
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 85:6, s. 932-945
  • Tidskriftsartikel (refereegranskat)abstract
    • b-AP15 [(3E, 5E)-3,5-bis[(4-nitrophenyl) methylidene]-1-(prop-2enoyl) piperidin-4-one] is a small molecule inhibitor of the ubiquitin specific peptidase (USP) 14/ubiquitin carboxyl-terminal hydrolase (UCH) L5 deubiquitinases of the 19S proteasome that shows antitumor activity in a number of tumor models, including multiple myeloma. b-AP15 contains an alpha,beta-unsaturated carbonyl unit that is likely to react with intracellular nucleophiles such as cysteine thiolates by Michael addition. We found that binding of b-AP15 to USP14 is partially reversible, and that inhibition of proteasome function is reversible in cells. Despite reversible binding, tumor cells are rapidly committed to apoptosis/cell death after exposure to b-AP15. We show that b-AP15 is rapidly taken up from the medium and enriched in cells. Enrichment provides an explanation of the stronger potency of the compound in cellular assays compared with in vitro biochemical assays. Cellular uptake was impaired by 30-minute pretreatment of cells with low concentrations of N-ethylmaleimide (10 mu M), suggesting that enrichment was thiol dependent. We report that in addition to inhibition of deubiquitinases, b-AP15 inhibits the selenoprotein thioredoxin reductase (TrxR). Whereas proteasome inhibition was closely associated with cell death induction, inhibition of TrxR was not. TrxR inhibition is, however, likely to contribute to triggering of oxidative stress observed with b-AP15. Furthermore, we present structure-activity, in vivo pharmacokinetic, and hepatocyte metabolism data for b-AP15. We conclude that the strong enrichment of b-AP15 in cells and a rapid commitment to apoptosis/cell death are factors that likely contribute to the strong antitumor activity of this compound.
  •  
9.
  • Zhang, Xiaonan, et al. (författare)
  • Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments
  • 2014
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5, s. 3295-
  • Tidskriftsartikel (refereegranskat)abstract
    • Abnormal vascularization of solid tumours results in the development of microenvironments deprived of oxygen and nutrients that harbour slowly growing and metabolically stressed cells. Such cells display enhanced resistance to standard chemotherapeutic agents and repopulate tumours after therapy. Here we identify the small molecule VLX600 as a drug that is preferentially active against quiescent cells in colon cancer 3-D microtissues. The anticancer activity is associated with reduced mitochondrial respiration, leading to bioenergetic catastrophe and tumour cell death. VLX600 shows enhanced cytotoxic activity under conditions of nutrient starvation. Importantly, VLX600 displays tumour growth inhibition in vivo. Our findings suggest that tumour cells in metabolically compromised microenvironments have a limited ability to respond to decreased mitochondrial function, and suggest a strategy for targeting the quiescent populations of tumour cells for improved cancer treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy