SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Larsson Sune) ;pers:(Hilborn Jöns 1956)"

Sökning: WFRF:(Larsson Sune) > Hilborn Jöns 1956

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Paidikondala, Maruthibabu, 1985-, et al. (författare)
  • Impact of Hydrogel Cross-Linking Chemistry on the in Vitro and in VivoBioactivity of Recombinant Human Bone Morphogenetic Protein-2
  • 2019
  • Ingår i: ACS Applied Bio Materials. - : American Chemical Society (ACS). - 2576-6422.
  • Tidskriftsartikel (refereegranskat)abstract
    • Designing strategies to deliver functional proteins at physiologically relevant concentrations using chemically cross-linked biocompatible hydrogels is a major field of research. However, the impact of cross-linking chemistry on the encapsulated protein bioactivity is rarely studied. Here we examine the two well-known cross-linking reactions namely; hydrazone cross-linking chemistry and thiol-Michael addition reaction to form hyaluronic acid (HA) hydrogels. As a therapeutic protein, we employed recombinant human bone morphogenetic protein-2 (rhBMP-2) for this study. Incubation of rhBMP-2 with HA functionalized with a thiol diminished phosphorylation of Smad 1/5/8, a signal transducer for osteogenic differntiation, whereas an aldehyde functionalized HA had no effect. This indicates that thiol functionalized polymers indeed has an impact on protein function. To validate this result in an in vivo setting we performed BMP-2 induced bone formation in a rat ectopic model. These experiments revealed that the hydrazone-cross-linked HA-hydrogel induced significantly higher bone formation (18.90 ± 4.25 mm3) as compared to the HA-thiol-Michael hydrogels (1.25 ± 0.52 mm3) after 8 weeks as determined by micro-computed tomography. The histological examination of the neo-bone indicated that hydrazone-hydrogels promoted a better quality of bone formation with improved mineralization and collagen formation as compared to the thiol-Michael hydrogels. We believe such a direct comparison of two cross-linking chemistries will provide new insight for developing biomaterials for protein delivery for in vivo applications.
  •  
3.
  •  
4.
  • Yan, Hongji, et al. (författare)
  • Synthetic design of growth factor sequestering extracellular matrix mimetic hydrogel for promoting in vivo bone formation
  • 2018
  • Ingår i: Biomaterials. - : Elsevier. - 0142-9612 .- 1878-5905. ; 161, s. 190-202
  • Tidskriftsartikel (refereegranskat)abstract
    • Synthetic scaffolds that possess an intrinsic capability to protect and sequester sensitive growth factors is a primary requisite for developing successful tissue engineering strategies. Growth factors such as recombinant human bone morphogenetic protein-2 (rhBMP-2) is highly susceptible to premature degradation and to provide a meaningful clinical outcome require high doses that can cause serious side effects. We discovered a unique strategy to stabilize and sequester rhBMP-2 by enhancing its molecular interactions with hyaluronic acid (HA), an extracellular matrix (ECM) component. We found that by tuning the initial protonation state of carboxylic acid residues of HA in a covalently crosslinked hydrogel modulate BMP-2 release at physiological pH by minimizing the electrostatic repulsion and maximizing the Van der Waals interactions. At neutral pH, BMP-2 release is primarily governed by Fickian diffusion, whereas at acidic pH both diffusion and electrostatic interactions between HA and BMP-2 become important as confirmed by molecular dynamics simulations. Our results were also validated in an in vivo rat ectopic model with rhBMP-2 loaded hydrogels, which demonstrated superior bone formation with acidic hydrogel as compared to the neutral counterpart. We believe this study provides new insight on growth factor stabilization and highlights the therapeutic potential of engineered matrices for rhBMP-2 delivery and may help to curtail the adverse side effects associated with the high dose of the growth factor.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy