SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lassmann Michael) "

Sökning: WFRF:(Lassmann Michael)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tran-Gia, Johannes, et al. (författare)
  • A multicentre and multi-national evaluation of the accuracy of quantitative Lu-177 SPECT/CT imaging performed within the MRTDosimetry project
  • 2021
  • Ingår i: EJNMMI Physics. - : Springer Science and Business Media LLC. - 2197-7364. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Patient-specific dosimetry is required to ensure the safety of molecular radiotherapy and to predict response. Dosimetry involves several steps, the first of which is the determination of the activity of the radiopharmaceutical taken up by an organ/lesion over time. As uncertainties propagate along each of the subsequent steps (integration of the time–activity curve, absorbed dose calculation), establishing a reliable activity quantification is essential. The MRTDosimetry project was a European initiative to bring together expertise in metrology and nuclear medicine research, with one main goal of standardizing quantitative 177Lu SPECT/CT imaging based on a calibration protocol developed and tested in a multicentre inter-comparison. This study presents the setup and results of this comparison exercise. Methods: The inter-comparison included nine SPECT/CT systems. Each site performed a set of three measurements with the same setup (system, acquisition and reconstruction): (1) Determination of an image calibration for conversion from counts to activity concentration (large cylinder phantom), (2) determination of recovery coefficients for partial volume correction (IEC NEMA PET body phantom with sphere inserts), (3) validation of the established quantitative imaging setup using a 3D printed two-organ phantom (ICRP110-based kidney and spleen). In contrast to previous efforts, traceability of the activity measurement was required for each participant, and all participants were asked to calculate uncertainties for their SPECT-based activities. Results: Similar combinations of imaging system and reconstruction lead to similar image calibration factors. The activity ratio results of the anthropomorphic phantom validation demonstrate significant harmonization of quantitative imaging performance between the sites with all sites falling within one standard deviation of the mean values for all inserts. Activity recovery was underestimated for total kidney, spleen, and kidney cortex, while it was overestimated for the medulla. Conclusion: This international comparison exercise demonstrates that harmonization of quantitative SPECT/CT is feasible when following very specific instructions of a dedicated calibration protocol, as developed within the MRTDosimetry project. While quantitative imaging performance demonstrates significant harmonization, an over- and underestimation of the activity recovery highlights the limitations of any partial volume correction in the presence of spill-in and spill-out between two adjacent volumes of interests.
  •  
2.
  • Tran-Gia, Johannes, et al. (författare)
  • On the use of solid 133Ba sources as surrogate for liquid 131I in SPECT/CT calibration : a European multi-centre evaluation
  • 2023
  • Ingår i: EJNMMI Physics. - 2197-7364. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Commissioning, calibration, and quality control procedures for nuclear medicine imaging systems are typically performed using hollow containers filled with radionuclide solutions. This leads to multiple sources of uncertainty, many of which can be overcome by using traceable, sealed, long-lived surrogate sources containing a radionuclide of comparable energies and emission probabilities. This study presents the results of a quantitative SPECT/CT imaging comparison exercise performed within the MRTDosimetry consortium to assess the feasibility of using 133Ba as a surrogate for 131I imaging. Materials and methods: Two sets of four traceable 133Ba sources were produced at two National Metrology Institutes and encapsulated in 3D-printed cylinders (volume range 1.68–107.4 mL). Corresponding hollow cylinders to be filled with liquid 131I and a mounting baseplate for repeatable positioning within a Jaszczak phantom were also produced. A quantitative SPECT/CT imaging comparison exercise was conducted between seven members of the consortium (eight SPECT/CT systems from two major vendors) based on a standardised protocol. Each site had to perform three measurements with the two sets of 133Ba sources and liquid 131I. Results: As anticipated, the 131I pseudo-image calibration factors (cps/MBq) were higher than those for 133Ba for all reconstructions and systems. A site-specific cross-calibration reduced the performance differences between both radionuclides with respect to a cross-calibration based on the ratio of emission probabilities from a median of 12–1.5%. The site-specific cross-calibration method also showed agreement between 133Ba and 131I for all cylinder volumes, which highlights the potential use of 133Ba sources to calculate recovery coefficients for partial volume correction. Conclusion: This comparison exercise demonstrated that traceable solid 133Ba sources can be used as surrogate for liquid 131I imaging. The use of solid surrogate sources could solve the radiation protection problem inherent in the preparation of phantoms with 131I liquid activity solutions as well as reduce the measurement uncertainties in the activity. This is particularly relevant for stability measurements, which have to be carried out at regular intervals.
  •  
3.
  • Zimmerman, Brian E, et al. (författare)
  • Multi-centre evaluation of accuracy and reproducibility of planar and SPECT image quantification : An IAEA phantom study
  • 2017
  • Ingår i: Zeitschrift für Medizinische Physik. - : Elsevier BV. - 1876-4436 .- 0939-3889. ; 27:2, s. 98-112
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate quantitation of activity provides the basis for internal dosimetry of targeted radionuclide therapies. This study investigated quantitative imaging capabilities at sites with a variety of experience and equipment and assessed levels of errors in activity quantitation in Single-Photon Emission Computed Tomography (SPECT) and planar imaging. Participants from 9 countries took part in a comparison in which planar, SPECT and SPECT with X ray computed tomography (SPECT-CT) imaging were used to quantify activities of four epoxy-filled cylinders containing 133Ba, which was chosen as a surrogate for 131I. The sources, with nominal volumes of 2, 4, 6 and 23mL, were calibrated for 133Ba activity by the National Institute of Standards and Technology, but the activity was initially unknown to the participants. Imaging was performed in a cylindrical phantom filled with water. Two trials were carried out in which the participants first estimated the activities using their local standard protocols, and then repeated the measurements using a standardized acquisition and analysis protocol. Finally, processing of the imaging data from the second trial was repeated by a single centre using a fixed protocol. In the first trial, the activities were underestimated by about 15% with planar imaging. SPECT with Chang's first order attenuation correction (Chang-AC) and SPECT-CT overestimated the activity by about 10%. The second trial showed moderate improvements in accuracy and variability. Planar imaging was subject to methodological errors, e.g., in the use of a transmission scan for attenuation correction. The use of Chang-AC was subject to variability from the definition of phantom contours. The project demonstrated the need for training and standardized protocols to achieve good levels of quantitative accuracy and precision in a multicentre setting. Absolute quantification of simple objects with no background was possible with the strictest protocol to about 6% with planar imaging and SPECT (with Chang-AC) and within 2% for SPECT-CT.
  •  
4.
  • Bardies, Manuel, et al. (författare)
  • Quantitative imaging for clinical dosimetry
  • 2006
  • Ingår i: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002. ; 569:2, s. 467-471
  • Tidskriftsartikel (refereegranskat)abstract
    • Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.
  •  
5.
  • Hesse, B, et al. (författare)
  • EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology
  • 2005
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 32:7, s. 855-897
  • Tidskriftsartikel (refereegranskat)abstract
    • The European procedural guidelines for radionuclide imaging of myocardial perfusion and viability are presented in 13 sections covering patient information, radiopharmaceuticals, injected activities and dosimetry, stress tests, imaging protocols and acquisition, quality control and reconstruction methods, gated studies and attenuation-scatter compensation, data analysis, reports and image display, and positron emission tomography. If the specific recommendations given could not be based on evidence from original, scientific studies, we tried to express this state-of-art. The guidelines are designed to assist in the practice of performing, interpreting and reporting myocardial perfusion SPET. The guidelines do not discuss clinical indications, benefits or drawbacks of radionuclide myocardial imaging compared to non-nuclear techniques, nor do they cover cost benefit or cost effectiveness.
  •  
6.
  • Leube, Julian, et al. (författare)
  • Analysis of a deep learning-based method for generation of SPECT projections based on a large Monte Carlo simulated dataset
  • 2022
  • Ingår i: EJNMMI Physics. - : Springer Science and Business Media LLC. - 2197-7364. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In recent years, a lot of effort has been put in the enhancement of medical imaging using artificial intelligence. However, limited patient data in combination with the unavailability of a ground truth often pose a challenge to a systematic validation of such methodologies. The goal of this work was to investigate a recently proposed method for an artificial intelligence-based generation of synthetic SPECT projections, for acceleration of the image acquisition process based on a large dataset of realistic SPECT simulations. Methods: A database of 10,000 SPECT projection datasets of heterogeneous activity distributions of randomly placed random shapes was simulated for a clinical SPECT/CT system using the SIMIND Monte Carlo program. Synthetic projections at fixed angular increments from a set of input projections at evenly distributed angles were generated by different u-shaped convolutional neural networks (u-nets). These u-nets differed in noise realization used for the training data, number of input projections, projection angle increment, and number of training/validation datasets. Synthetic projections were generated for 500 test projection datasets for each u-net, and a quantitative analysis was performed using statistical hypothesis tests based on structural similarity index measure and normalized root-mean-squared error. Additional simulations with varying detector orbits were performed on a subset of the dataset to study the effect of the detector orbit on the performance of the methodology. For verification of the results, the u-nets were applied to Jaszczak and NEMA physical phantom data obtained on a clinical SPECT/CT system. Results: No statistically significant differences were observed between u-nets trained with different noise realizations. In contrast, a statistically significant deterioration was found for training with a small subset (400 datasets) of the 10,000 simulated projection datasets in comparison with using a large subset (9500 datasets) for training. A good agreement between synthetic (i.e., u-net generated) and simulated projections before adding noise demonstrates a denoising effect. Finally, the physical phantom measurements show that our findings also apply for projections measured on a clinical SPECT/CT system. Conclusion: Our study shows the large potential of u-nets for accelerating SPECT/CT imaging. In addition, our analysis numerically reveals a denoising effect when generating synthetic projections with a u-net. Clinically interesting, the methodology has proven robust against camera orbit deviations in a clinically realistic range. Lastly, we found that a small number of training samples (e.g., ~ 400 datasets) may not be sufficient for reliable generalization of the u-net.
  •  
7.
  • Leube, Julian, et al. (författare)
  • Position dependence of recovery coefficients in 177Lu-SPECT/CT reconstructions – phantom simulations and measurements
  • 2024
  • Ingår i: EJNMMI Physics. - 2197-7364. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Although the importance of quantitative SPECT has increased tremendously due to newly developed therapeutic radiopharmaceuticals, there are still no accreditation programs to harmonize SPECT imaging. Work is currently underway to develop an accreditation for quantitative 177Lu SPECT/CT. The aim of this study is to verify whether the positioning of the spheres within the phantom has an influence on the recovery and thus needs to be considered in SPECT harmonization. In addition, the effects of these recovery coefficients on a potential partial volume correction as well as absorbed-dose estimates are investigated. Methods: Using a low-dose CT of a SPECT/CT acquisition, a computerized version of the NEMA body phantom was created using a semi-automatic threshold-based method. Based on the mass-density map, the detector orbit, and the sphere centers, realistic SPECT acquisitions of all possible 720 sphere configurations of both the PET and the SPECT versions of the NEMA Body Phantom were generated using Monte Carlo simulations. SPECT reconstructions with different numbers of updates were performed without (CASToR) and with resolution modeling (STIR). Recovery coefficients were calculated for all permutations, reconstruction methods, and phantoms, and their dependence on the sphere positioning was investigated. Finally, the simulation-based findings were validated using SPECT/CT acquisitions of six different sphere configurations. Results: Our analysis shows that sphere positioning has a significant impact on the recovery for both of the reconstruction methods and the phantom type. Although resolution modeling resulted in significantly higher recovery, the relative variation in recovery within the 720 permutations was even larger. When examining the extreme values of the recovery, reconstructions without resolution modeling were influenced primarily by the sphere position, while with resolution modeling the volume of the two adjacent spheres had a larger influence. The SPECT measurements confirmed these observations, and the recovery curves showed good overall agreement with the simulated data. Conclusion: Our study shows that sphere positioning has a significant impact on the recovery obtained in NEMA sphere phantom measurements and should therefore be considered in a future SPECT accreditation. Furthermore, the single-measurement method normally performed for PVC should be reconsidered to account for the position dependency.
  •  
8.
  • Reinthaler, Eva M., et al. (författare)
  • TPP2 mutation associated with sterile brain inflammation mimicking MS
  • 2018
  • Ingår i: NEUROLOGY-GENETICS. - 2376-7839. ; 4:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To ascertain the genetic cause of a consanguineous family from Syria suffering from a sterile brain inflammation mimicking a mild nonprogressive form of MS.Methods We used homozygosity mapping and next-generation sequencing to detect the disease-causing gene in the affected siblings. In addition, we performed RNA and protein expression studies, enzymatic activity assays, immunohistochemistry, and targeted sequencing of further MS cases from Austria, Germany, Canada and Jordan.Results In this study, we describe the identification of a homozygous missense mutation (c.82T>G, p.Cys28Gly) in the tripeptidyl peptidase II (TPP2) gene in all 3 affected siblings of the family. Sequencing of all TPP2-coding exons in 826 MS cases identified one further homozygous missense variant (c.2027C>T, p.Thr676Ile) in a Jordanian MS patient. TPP2 protein expression in whole blood was reduced in the affected siblings. In contrast, TPP2 protein expression in postmortem brain tissue from MS patients without TPP2 mutations was highly upregulated.Conclusions The homozygous TPP2 mutation (p.Cys28Gly) is likely responsible for the inflammation phenotype in this family. TPP2 is an ubiquitously expressed serine peptidase that removes tripeptides from the N-terminal end of longer peptides. TPP2 is involved in various biological processes including the destruction of major histocompatibility complex Class I epitopes. Recessive loss-of-function mutations in TPP2 were described in patients with Evans syndrome, a rare autoimmune disease affecting the hematopoietic system. Based on the gene expression results in our MS autopsy brain samples, we further suggest that TPP2 may play a broader role in the inflammatory process in MS.
  •  
9.
  •  
10.
  • Tennvall, Jan, et al. (författare)
  • EANM procedure guideline for radio-immunotherapy for B-cell lymphoma with (90)Y-radiolabelled ibritumomab tiuxetan (Zevalin).
  • 2007
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 34:4, s. 616-622
  • Tidskriftsartikel (refereegranskat)abstract
    • Background In January 2004, EMEA approved Y-90-radiolabelled ibritumomab tiuxetan, Zevalin, in Europe for the treatment of adult patients with rituximab-relapsed or -refractory CD20+ follicular B-cell non-Hodgkin's lymphoma. The number of European nuclear medicine departments using Zevalin is continuously increasing, since the therapy is often considered successful. The Therapy, Oncology and Dosimetry Committees have worked together in order to define some EANM guidelines on the use of Zevalin, paying particular attention to the problems related to nuclear medicine. Purpose The purpose of this guideline is to assist the nuclear medicine physician in treating and managing patients who may be candidates for radio-immunotherapy. The guideline also stresses the need for close collaboration with the physician(s) treating the patient for the underlying disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy