SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lattanzi V) ;lar1:(cth)"

Sökning: WFRF:(Lattanzi V) > Chalmers tekniska högskola

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Taquet, V, et al. (författare)
  • Seeds of Life in Space (SOLIS) VI. Chemical evolution of sulfuretted species along the outflows driven by the low-mass protostellar binary NGC1333-IRAS4A
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 637
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Low-mass protostars drive powerful molecular outflows that can be observed with millimetre and submillimetre telescopes. Various sulfuretted species are known to be bright in shocks and could be used to infer the physical and chemical conditions throughout the observed outflows. Aims. The evolution of sulfur chemistry is studied along the outflows driven by the NGC1333-IRAS4A protobinary system located in the Perseus cloud to constrain the physical and chemical processes at work in shocks. Methods. We observed various transitions from OCS, CS, SO, and SO2 towards NGC1333-IRAS4A in the 1.3, 2, and 3mm bands using the IRAM NOrthern Extended Millimeter Array and we interpreted the observations through the use of the Paris-Durham shock model. Results. The targeted species clearly show different spatial emission along the two outflows driven by IRAS4A. OCS is brighter on small and large scales along the south outflow driven by IRAS4A1, whereas SO2 is detected rather along the outflow driven by IRAS4A2 that is extended along the north east-south west direction. SO is detected at extremely high radial velocity up to +25 km s 1 relative to the source velocity, clearly allowing us to distinguish the two outflows on small scales. Column density ratio maps estimated from a rotational diagram analysis allowed us to confirm a clear gradient of the OCS/SO2 column density ratio between the IRAS4A1 and IRAS4A2 outflows. Analysis assuming non Local Thermodynamic Equilibrium of four SO2 transitions towards several SiO emission peaks suggests that the observed gas should be associated with densities higher than 105 cm 3 and relatively warm (T > 100 K) temperatures in most cases. Conclusions. The observed chemical differentiation between the two outflows of the IRAS4A system could be explained by a different chemical history. The outflow driven by IRAS4A1 is likely younger and more enriched in species initially formed in interstellar ices, such as OCS, and recently sputtered into the shock gas. In contrast, the longer and likely older outflow triggered by IRAS4A2 is more enriched in species that have a gas phase origin, such as SO2.
  •  
2.
  • Bulut, N., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS): III. Unlocking the CS chemistry: The CS+O reaction
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 646
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Carbon monosulphide (CS) is among the most abundant gas-phase S-bearing molecules in cold dark molecular clouds. It is easily observable with several transitions in the millimeter wavelength range, and has been widely used as a tracer of the gas density in the interstellar medium in our Galaxy and external galaxies. However, chemical models fail to account for the observed CS abundances when assuming the cosmic value for the elemental abundance of sulfur. Aims. The CS+O → CO + S reaction has been proposed as a relevant CS destruction mechanism at low temperatures, and could explain the discrepancy between models and observations. Its reaction rate has been experimentally measured at temperatures of 150-400 K, but the extrapolation to lower temperatures is doubtful. Our goal is to calculate the CS+O reaction rate at temperatures <150 K which are prevailing in the interstellar medium. Methods. We performed ab initio calculations to obtain the three lowest potential energy surfaces (PES) of the CS+O system. These PESs are used to study the reaction dynamics, using several methods (classical, quantum, and semiclassical) to eventually calculate the CS + O thermal reaction rates. In order to check the accuracy of our calculations, we compare the results of our theoretical calculations for T ~ 150-400 K with those obtained in the laboratory. Results. Our detailed theoretical study on the CS+O reaction, which is in agreement with the experimental data obtained at 150-400 K, demonstrates the reliability of our approach. After a careful analysis at lower temperatures, we find that the rate constant at 10 K is negligible, below 10-15 cm s-1, which is consistent with the extrapolation of experimental data using the Arrhenius expression. Conclusions. We use the updated chemical network to model the sulfur chemistry in Taurus Molecular Cloud 1 (TMC 1) based on molecular abundances determined from Gas phase Elemental abundances in Molecular CloudS (GEMS) project observations. In our model, we take into account the expected decrease of the cosmic ray ionization rate, ζH2, along the cloud. The abundance of CS is still overestimated when assuming the cosmic value for the sulfur abundance.
  •  
3.
  • Navarro-Almaida, D., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS): II. On the quest for the sulphur reservoir in molecular clouds: the H2S case
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 637
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Sulphur is one of the most abundant elements in the Universe. Surprisingly, sulphuretted molecules are not as abundant as expected in the interstellar medium and the identity of the main sulphur reservoir is still an open question. Aims. Our goal is to investigate the H2S chemistry in dark clouds, as this stable molecule is a potential sulphur reservoir. Methods. Using millimeter observations of CS, SO, H2S, and their isotopologues, we determine the physical conditions and H2S abundances along the cores TMC 1-C, TMC 1-CP, and Barnard 1b. The gas-grain model NAUTILUS is used to model the sulphur chemistry and explore the impact of photo-desorption and chemical desorption on the H2S abundance. Results. Our modeling shows that chemical desorption is the main source of gas-phase H2S in dark cores. The measured H2S abundance can only be fitted if we assume that the chemical desorption rate decreases by more than a factor of 10 when n(H) > 2 x 10(4). This change in the desorption rate is consistent with the formation of thick H2O and CO ice mantles on grain surfaces. The observed SO and H2S abundances are in good agreement with our predictions adopting an undepleted value of the sulphur abundance. However, the CS abundance is overestimated by a factor of 5-10. Along the three cores, atomic S is predicted to be the main sulphur reservoir. Conclusions. The gaseous H2S abundance is well reproduced, assuming undepleted sulphur abundance and chemical desorption as the main source of H2S. The behavior of the observed H2S abundance suggests a changing desorption efficiency, which would probe the snowline in these cold cores. Our model, however, highly overestimates the observed gas-phase CS abundance. Given the uncertainty in the sulphur chemistry, we can only conclude that our data are consistent with a cosmic elemental S abundance with an uncertainty of a factor of 10.
  •  
4.
  • Rodríguez-Baras, M., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS): IV. Observational results and statistical trends
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Tidskriftsartikel (refereegranskat)abstract
    • Gas phase Elemental abundances in Molecular CloudS (GEMS) is an IRAM 30 m Large Program designed to provide estimates of the S, C, N, and O depletions and gas ionization degree, X(e-), in a selected set of star-forming filaments of Taurus, Perseus, and Orion. Our immediate goal is to build up a complete and large database of molecular abundances that can serve as an observational basis for estimating X(e-) and the C, O, N, and S depletions through chemical modeling. We observed and derived the abundances of 14 species (13CO, C18O, HCO+, H13CO+, HC18O+, HCN, H13CN, HNC, HCS+, CS, SO, 34SO, H2S, and OCS) in 244 positions, covering the AV ~3 to ~100 mag, n(H2) ~ a few 103 to 106 cm-3, and Tk ~10 to ~30 K ranges in these clouds, and avoiding protostars, HII regions, and bipolar outflows. A statistical analysis is carried out in order to identify general trends between different species and with physical parameters. Relations between molecules reveal strong linear correlations which define three different families of species: (1) 13CO and C18O isotopologs; (2) H13CO+, HC18O+, H13 CN, and HNC; and (3) the S-bearing molecules. The abundances of the CO isotopologs increase with the gas kinetic temperature until TK ~ 15 K. For higher temperatures, the abundance remains constant with a scatter of a factor of ~3. The abundances of H13 CO+, HC18 O+, H13 CN, and HNC are well correlated with each other, and all of them decrease with molecular hydrogen density, following the law ∝ n(H2)-0.8  ±  0.2. The abundances of S-bearing species also decrease with molecular hydrogen density at a rate of (S-bearing/H)gas ∝ n(H2)-0.6  ±  0.1. The abundances of molecules belonging to groups 2 and 3 do not present any clear trend with gas temperature. At scales of molecular clouds, the C18O abundance is the quantity that better correlates with the cloud mass. We discuss the utility of the 13CO/C18O, HCO+/H13CO+, and H13 CO+/H13CN abundance ratios as chemical diagnostics of star formation in external galaxies.
  •  
5.
  • Fuente, A., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS) I. The prototypical dark cloud TMC 1
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 624
  • Tidskriftsartikel (refereegranskat)abstract
    • GEMS is an IRAM 30 m Large Program whose aim is determining the elemental depletions and the ionization fraction in a set of prototypical star-forming regions. This paper presents the first results from the prototypical dark cloud Taurus molecular cloud (TMC) 1. Extensive millimeter observations have been carried out with the IRAM 30 m telescope (3 and 2mm) and the 40 m Yebes telescope (1.3 cm and 7 mm) to determine the fractional abundances of CO, HCO+, HCN, CS, SO, HCS+, and N2H+ in three cuts which intersect the dense filament at the well-known positions TMC 1-CP, TMC 1-NH3, and TMC 1-C, covering a visual extinction range from A(v) similar to 3 to similar to 20 mag. Two phases with differentiated chemistry can be distinguished: (i) the translucent envelope with molecular hydrogen densities of 1-5 x 10(3) cm(-3); and (ii) the dense phase, located at A(v) > 10 mag, with molecular hydrogen densities >10(4) cm(-3). Observations and modeling show that the gas phase abundances of C and O progressively decrease along the C+/C/CO transition zone (A(v) similar to 3 mag) where C/H similar to 8 x 10(-5) and C/O similar to 0.8-1, until the beginning of the dense phase at A(v) similar to 10 mag. This is consistent with the grain temperatures being below the CO evaporation temperature in this region. In the case of sulfur, a strong depletion should occur before the translucent phase where we estimate an S/H similar to (0.4-2.2) x 10(-6), an abundance similar to 7-40 times lower than the solar value. A second strong depletion must be present during the formation of the thick icy mantles to achieve the values of S/H measured in the dense cold cores (S/H similar to 8 x 10(-8)). Based on our chemical modeling, we constrain the value of zeta(H2) to similar to(0.5-1.8) x 10(-16) s(-1) in the translucent cloud.
  •  
6.
  • Malbet, F., et al. (författare)
  • Faint objects in motion: the new frontier of high precision astrometry
  • 2021
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 51:3, s. 845-886
  • Tidskriftsartikel (refereegranskat)abstract
    • Sky survey telescopes and powerful targeted telescopes play complementary roles in astronomy. In order to investigate the nature and characteristics of the motions of very faint objects, a flexibly-pointed instrument capable of high astrometric accuracy is an ideal complement to current astrometric surveys and a unique tool for precision astrophysics. Such a space-based mission will push the frontier of precision astrometry from evidence of Earth-mass habitable worlds around the nearest stars, to distant Milky Way objects, and out to the Local Group of galaxies. As we enter the era of the James Webb Space Telescope and the new ground-based, adaptive-optics-enabled giant telescopes, by obtaining these high precision measurements on key objects that Gaia could not reach, a mission that focuses on high precision astrometry science can consolidate our theoretical understanding of the local Universe, enable extrapolation of physical processes to remote redshifts, and derive a much more consistent picture of cosmological evolution and the likely fate of our cosmos. Already several missions have been proposed to address the science case of faint objects in motion using high precision astrometry missions: NEAT proposed for the ESA M3 opportunity, micro-NEAT for the S1 opportunity, and Theia for the M4 and M5 opportunities. Additional new mission configurations adapted with technological innovations could be envisioned to pursue accurate measurements of these extremely small motions. The goal of this White Paper is to address the fundamental science questions that are at stake when we focus on the motions of faint sky objects and to briefly review instrumentation and mission profiles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy