SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Launer Lenore) "

Sökning: WFRF:(Launer Lenore)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Christophersen, Ingrid E., et al. (författare)
  • Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation
  • 2017
  • Ingår i: Nature Genetics. - NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 49:6, s. 946-
  • Tidskriftsartikel (refereegranskat)abstract
    • Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death(1,2). Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups(3-7). To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery(8).
  •  
2.
  • Manning, Alisa K., et al. (författare)
  • A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance
  • 2012
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 44:6, s. 81-659
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and beta-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 x 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.
  •  
3.
  • Teslovich, Tanya M., et al. (författare)
  • Biological, clinical and population relevance of 95 loci for blood lipids
  • 2010
  • Ingår i: Nature. - Nature Publishing Group. - 0028-0836. ; 466:7307, s. 707-713
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P<5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.
  •  
4.
  • Yang, Jian, et al. (författare)
  • FTO genotype is associated with phenotypic variability of body mass index
  • 2012
  • Ingår i: Nature. - Nature Publishing Group. - 0028-0836. ; 490:7419, s. 267-272
  • Tidskriftsartikel (refereegranskat)abstract
    • There is evidence across several species for genetic control of phenotypic variation of complex traits(1-4), such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using similar to 170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype)(5-7), is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of similar to 0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI8, possibly mediated by DNA methylation(9,10). Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000.
  •  
5.
  • Adams, Hieab H. H., et al. (författare)
  • Novel genetic loci underlying human intracranial volume identified through genome-wide association
  • 2016
  • Ingår i: Nature Neuroscience. - 1097-6256 .- 1546-1726. ; 19:12, s. 1569-1582
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (rho(genetic) = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N-combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.</p>
  •  
6.
  • Allen, Hana Lango, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • Ingår i: Nature. - 1476-4687. ; 467:7317, s. 832-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits(1), but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait(2,3). The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
7.
  • Allen, Hana Lango, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height
  • 2010
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 467:7317, s. 832-838
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits(1), but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait(2,3). The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P&lt;0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.</p>
  •  
8.
  • Arking, Dan E, et al. (författare)
  • Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization
  • 2014
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 46:8, s. 826-836
  • Tidskriftsartikel (refereegranskat)abstract
    • The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD.
  •  
9.
  • Arking, Dan E, et al. (författare)
  • Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.
  • 2014
  • Ingår i: Nature Genetics. - 1061-4036 .- 1546-1718. ; 46:8, s. 826-836
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD.</p>
  •  
10.
  • Artigas Soler, María, et al. (författare)
  • Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function.
  • 2011
  • Ingår i: Nature genetics. - 1546-1718. ; 43:11, s. 1082-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulmonary function measures reflect respiratory health and are used in the diagnosis of chronic obstructive pulmonary disease. We tested genome-wide association with forced expiratory volume in 1 second and the ratio of forced expiratory volume in 1 second to forced vital capacity in 48,201 individuals of European ancestry with follow up of the top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P < 5 × 10(-8)) with pulmonary function in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (also known as EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1 and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function.
  •  
Skapa referenser, mejla, bekava och länka
Åtkomst
fritt online (26)
Typ av publikation
tidskriftsartikel (126)
Typ av innehåll
refereegranskat (126)
övrigt vetenskapligt (6)
Författare/redaktör
Gudnason, Vilmundur (113)
Harris, Tamara B. (106)
Launer, Lenore J. (105)
Hofman, Albert (84)
Uitterlinden, Andre ... (79)
Van Duijn, Cornelia ... (78)
visa fler...
Psaty, Bruce M. (75)
Hayward, Caroline (75)
Boerwinkle, Eric (74)
Rotter, Jerome I. (69)
Smith, Albert V. (63)
Rudan, Igor (62)
Chasman, Daniel I., (61)
Amin, Najaf (60)
Polasek, Ozren (56)
Eiriksdottir, Gudny (56)
Ridker, Paul M., (55)
Wareham, Nicholas J (54)
Campbell, Harry (53)
Salomaa, Veikko (47)
Rivadeneira, Fernand ... (46)
Bis, Joshua C. (44)
Gieger, Christian (44)
Esko, Tonu (44)
Zhao, Jing Hua (44)
Wright, Alan F. (44)
Boehnke, Michael (43)
Feitosa, Mary F. (43)
Teumer, Alexander (42)
Vitart, Veronique (42)
Luan, Jian'an (40)
Kuusisto, Johanna, (39)
Laakso, Markku, (39)
Cupples, L. Adrienne (39)
Boomsma, Dorret I. (38)
Smith, Albert Vernon (38)
Hottenga, Jouke-Jan (37)
Fornage, Myriam (37)
Langenberg, Claudia (37)
Jackson, Anne U. (37)
Ferrucci, Luigi (36)
Mohlke, Karen L (35)
Ingelsson, Erik (35)
Mangino, Massimo (35)
Willemsen, Gonneke (35)
Oostra, Ben A. (35)
Peters, Annette (35)
Kolcic, Ivana (35)
Lehtimaki, Terho (35)
Pramstaller, Peter P ... (35)
visa färre...
Lärosäte
Uppsala universitet (51)
Lunds universitet (27)
Umeå universitet (21)
Göteborgs universitet (20)
Karolinska Institutet (14)
Stockholms universitet (10)
visa fler...
Örebro universitet (5)
Mittuniversitetet (2)
swepub_uni:mau_t (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (126)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (122)
Naturvetenskap (8)
Teknik (1)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy