SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Laurila Anssi) ;pers:(Quintela Maria)"

Sökning: WFRF:(Laurila Anssi) > Quintela Maria

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Meyer-Lucht, Yvonne, et al. (författare)
  • Genetic basis of amphibian larval development along a latitudinal gradient : Gene diversity, selection and links with phenotypic variation in transcription factor C/EBP-1
  • 2019
  • Ingår i: Molecular Ecology. - : WILEY. - 0962-1083 .- 1365-294X. ; 28:11, s. 2786-2801
  • Tidskriftsartikel (refereegranskat)abstract
    • Ectotherm development rates often show adaptive divergence along climatic gradients, but the genetic basis for this variation is rarely studied. Here, we investigated the genetic basis for phenotypic variation in larval development in the moor frog Rana arvalis from five regions along a latitudinal gradient from Germany to northern Sweden. We focused on the C/EBP-1 gene, a transcription factor associated with larval development time. Allele frequencies at C/EBP-1 varied strongly among geographical regions. Overall, the distribution of alleles along the gradient was in concordance with the dual post-glacial colonization routes into Scandinavia, with a large number of alleles exclusively present along the southern colonization route. Only three of 38 alleles were shared between the routes. Analysis of contemporary selection on C/EBP-1 showed divergent selection among the regions, probably reflecting adaptation to the local environmental conditions, although this was especially strong between southern and northern regions coinciding also with lineages from different colonization routes. Overall, the C/EBP-1 gene has historically been under purifying selection, but two specific amino acid positions showed significant signals of positive selection. These positions showed divergence between southern and northern regions, and we suggest that they are functionally involved in the climatic adaptation of larval development. Using phenotypic data from a common garden experiment, we found evidence for specific C/EBP-1 alleles being correlated with larval development time, suggesting a functional role in adaptation of larval development to large-scale climatic variation.
  •  
3.
  • Orizaola, Germán, et al. (författare)
  • Climatic adaptation in an isolated and genetically impoverished amphibian population
  • 2010
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 33:4, s. 730-737
  • Tidskriftsartikel (refereegranskat)abstract
    • The capacity of populations to respond adaptively to environmental change is essential for their persistence. Isolated populations often harbour reduced genetic variation, which is predicted to decrease adaptive potential, and can be detrimental under the current scenarios of global change. In this study, we examined climatic adaptation in larval life history traits in the pool frog Rana lessonae along a latitudinal gradient across the northern distribution area of the species, paying special attention to the isolated and genetically impoverished fringe populations in central Sweden. Larvae from eight populations within three geographic areas (Poland, Latvia and Sweden) were reared under three temperatures (19, 22 and 26 degrees C) in a common garden laboratory experiment. We found clear evidence for latitudinal adaptation in R. lessonae populations, larvae from higher latitudes growing and developing faster than low-latitude ones. Larvae from the Swedish populations were able to compensate for the effects of cooler temperatures and a shorter growth season with genetically higher growth and development rates (i.e. countergradient variation) in the two higher temperature treatments, but there was no difference among the populations at the lowest temperature treatment, which is likely to be close to the temperature limiting growth in R. lessonae. Our results demonstrate that isolated and genetically impoverished populations can be locally adapted, and identify the Swedish fringe populations as a significant conservation unit adapted to the northern environmental conditions.
  •  
4.
  • Quintela, Maria, et al. (författare)
  • AFLPs and Mitochondrial Haplotypes Reveal Local Adaptation to Extreme Thermal Environments in a Freshwater Gastropod
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:7, s. e101821-
  • Tidskriftsartikel (refereegranskat)abstract
    • The way environmental variation shapes neutral and adaptive genetic variation in natural populations is a key issue in evolutionary biology. Genome scans allow the identification of the genetic basis of local adaptation without previous knowledge of genetic variation or traits under selection. Candidate loci for divergent adaptation are expected to show higher F-ST than neutral loci influenced solely by random genetic drift, migration and mutation. The comparison of spatial patterns of neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection among populations living in contrasting environments. Using the gastropod Radix balthica as a system, we analyzed 376 AFLP markers and 25 mtDNA COI haplotypes for candidate loci and associations with local adaptation among contrasting thermal environments in Lake Myvatn, a volcanic lake in northern Iceland. We found that 2% of the analysed AFLP markers were under directional selection and 12% of the mitochondrial haplotypes correlated with differing thermal habitats. The genetic networks were concordant for AFLP markers and mitochondrial haplotypes, depicting distinct topologies at neutral and candidate loci. Neutral topologies were characterized by intense gene flow revealed by dense nets with edges connecting contrasting thermal habitats, whereas the connections at candidate loci were mostly restricted to populations within each thermal habitat and the number of edges decreased with temperature. Our results suggest microgeographic adaptation within Lake Myvatn and highlight the utility of genome scans in detecting adaptive divergence.
  •  
5.
  • Richter-Boix, Alexander, et al. (författare)
  • Fine-grained adaptive divergence in an amphibian : genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands
  • 2013
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 22:5, s. 1322-1340
  • Forskningsöversikt (refereegranskat)abstract
    • Adaptive ecological differentiation among sympatric populations is promoted by environmental heterogeneity, strong local selection and restricted gene flow. High gene flow, on the other hand, is expected to homogenize genetic variation among populations and therefore prevent local adaptation. Understanding how local adaptation can persist at the spatial scale at which gene flow occurs has remained an elusive goal, especially for wild vertebrate populations. Here, we explore the roles of natural selection and nonrandom gene flow (isolation by breeding time and habitat choice) in restricting effective migration among local populations and promoting generalized genetic barriers to neutral gene flow. We examined these processes in a network of 17 breeding ponds of the moor frog Rana arvalis, by combining environmental field data, a common garden experiment and data on variation in neutral microsatellite loci and in a thyroid hormone receptor (TR) gene putatively under selection. We illustrate the connection between genotype, phenotype and habitat variation and demonstrate that the strong differences in larval life history traits observed in the common garden experiment can result from adaptation to local pond characteristics. Remarkably, we found that haplotype variation in the TR gene contributes to variation in larval development time and growth rate, indicating that polymorphism in the TR gene is linked with the phenotypic variation among the environments. Genetic distance in neutral markers was correlated with differences in breeding time and environmental differences among the ponds, but not with geographical distance. These results demonstrate that while our study area did not exceed the scale of gene flow, ecological barriers constrained gene flow among contrasting habitats. Our results highlight the roles of strong selection and nonrandom gene flow created by phenological variation and, possibly, habitat preferences, which together maintain genetic and phenotypic divergence at a fine-grained spatial scale.
  •  
6.
  • Richter-Boix, Alex, et al. (författare)
  • Genetic analysis of differentiation among breeding ponds reveals a candidate gene for local adaptation in Rana arvalis
  • 2011
  • Ingår i: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 20:8, s. 1582-1600
  • Forskningsöversikt (refereegranskat)abstract
    • One of the main questions in evolutionary and conservation biology is how geographical and environmental features of the landscape shape neutral and adaptive genetic variation in natural populations. The identification of genomic polymorphisms that account for adaptive variation can aid in finding candidate loci for local adaptation. Consequently, a comparison of spatial patterns in neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection at the landscape scale. Many amphibians breed in wetlands, which differ in environmental conditions and in the degree of isolation, enhancing the potential for local adaptation. We used microsatellite markers to measure genetic differentiation among 17 local populations of Rana arvalis breeding in a network of wetlands. We found that locus RC08604 deviated from neutral expectations, suggesting that it is a good candidate for directional selection. We used a genetic network analysis to show that the allele distribution in this locus is correlated with habitat characteristics, whereas this was not the case at neutral markers that displayed a different allele distribution and population network in the study area. The graph approach illustrated the genomic heterogeneity (neutral loci vs. the candidate locus for directional selection) of gene exchange and genetic divergence among populations under directional selection. Limited gene flow between wetlands was only observed at the candidate genomic region under directional selection. RC08604 is partially located inside an up-regulated thyroid-hormone receptor (TR beta) gene coordinating the expression of other genes during metamorphosis and appears to be linked with variation in larval life-history traits found among R. arvalis populations. We suggest that directional selection on genes coding larval life-history traits is strong enough to maintain the divergence in these genomic regions, reducing the effective recombination of locally adapted alleles but not in other regions of the genome. Integrating this knowledge into conservation plans at the landscape scale will improve the design of management strategies to preserve adaptive genetic diversity in wetland networks.
  •  
7.
  • Richter-Boix, Alex, et al. (författare)
  • Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation
  • 2015
  • Ingår i: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 69:8, s. 2210-2226
  • Forskningsöversikt (refereegranskat)abstract
    • Although temperature variation is known to cause large-scale adaptive divergence, its potential role as a selective factor over microgeographic scales is less well-understood. Here, we investigated how variation in breeding pond temperature affects divergence in multiple physiological (thermal performance curve and critical thermal maximum [CTmax]) and life-history (thermal developmental reaction norms) traits in a network of Rana arvalis populations. The results supported adaptive responses to face two main constraints limiting the evolution of thermal adaptation. First, we found support for the faster-slower model, indicating an adaptive response to compensate for the thermodynamic constraint of low temperatures in colder environments. Second, we found evidence for the generalist-specialist trade-off with populations from colder and less thermally variable environments exhibiting a specialist phenotype performing at higher rates but over a narrower range of temperatures. By contrast, the local optimal temperature for locomotor performance and CTmax did not match either mean or maximum pond temperatures. These results highlight the complexity of the adaptive multiple-trait thermal responses in natural populations, and the role of local thermal variation as a selective force driving diversity in life-history and physiological traits in the presence of gene flow.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy