SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lauritzen Torsten) "

Sökning: WFRF:(Lauritzen Torsten)

  • Resultat 1-10 av 20
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Saxena, Richa, et al. (författare)
  • Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge
  • 2010
  • Ingår i: Nature Genetics. - Nature Publishing Group. - 1546-1718. ; 42:2, s. 75-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958-30,620). We identify variants at the GIPR locus associated with 2- h glucose level (rs10423928, beta (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 x 10(-15)). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 x 10(-17); ratio of insulin to glucose area under the curve, P = 1.3 x 10(-16)) and diminished incretin effect (n = 804; P = 4.3 x 10(-4)). We also identified variants at ADCY5 (rs2877716, P = 4.2 x 10(-16)), VPS13C (rs17271305, P = 4.1 x 10(-8)), GCKR (rs1260326, P = 7.1 x 10(-11)) and TCF7L2 (rs7903146, P = 4.2 x 10(-10)) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09-1.15, P = 4.8 x 10(-18)).
  •  
2.
  • Benzinou, Michael, et al. (författare)
  • Common nonsynonymous variants in PCSK1 confer risk of obesity.
  • 2008
  • Ingår i: Nature genetics. - 1546-1718. ; 40:8, s. 943-5
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in PCSK1 cause monogenic obesity. To assess the contribution of PCSK1 to polygenic obesity risk, we genotyped tag SNPs in a total of 13,659 individuals of European ancestry from eight independent case-control or family-based cohorts. The nonsynonymous variants rs6232, encoding N221D, and rs6234-rs6235, encoding the Q665E-S690T pair, were consistently associated with obesity in adults and children (P = 7.27 x 10(-8) and P = 2.31 x 10(-12), respectively). Functional analysis showed a significant impairment of the N221D-mutant PC1/3 protein catalytic activity.
  •  
3.
  • Færch, Kristine, et al. (författare)
  • Insulin resistance is accompanied by increased fasting glucagon and delayed glucagon suppression in individuals with normal and impaired glucose regulation
  • 2016
  • Ingår i: Diabetes. - American Diabetes Association Inc.. - 0012-1797. ; 65:11, s. 3473-3481
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyperinsulinemia is an adaptive mechanism that enables the maintenance of normoglycemia in the presence of insulin resistance. We assessed whether glucagon is also involved in the adaptation to insulin resistance. A total of 1,437 individuals underwent an oral glucose tolerance test with measurements of circulating glucose, insulin, and glucagon concentrations at 0, 30 and 120 min. Early glucagon suppression was defined as suppression in the period from 0 to 30 min, and late glucagon suppression as 30 to 120 min after glucose intake. Insulin sensitivity was estimated by the validated insulin sensitivity index. Individuals with screen-detected diabetes had 30% higher fasting glucagon levels and diminished early glucagon suppression, but greater late glucagon suppression when compared with individuals with normal glucose tolerance (P 0.014). Higher insulin resistance was associated with higher fasting glucagon levels, less early glucagon suppression, and greater late glucagon suppression (P < 0.001). The relationship between insulin sensitivity and fasting glucagon concentrations was nonlinear (P < 0.001). In conclusion, increased fasting glucagon levels and delayed glucagon suppression, together with increased circulating insulin levels, develop in parallel with insulin resistance. Therefore, glucose maintenance during insulin resistance may depend not only on hyperinsulinemia but also on the ability to suppress glucagon early after glucose intake.
  •  
4.
  • Flannick, Jason, et al. (författare)
  • Data Descriptor Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (&gt; 80% of low-frequency coding variants in similar to ~82 K Europeans via the exome chip, and similar to ~90% of low-frequency non-coding variants in similar to ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.</p>
  •  
5.
  • Flannick, Jason, et al. (författare)
  • Sequence data and association statistics from 12,940 type 2 diabetes cases and controls
  • 2017
  • Ingår i: Scientific Data. - Nature Publishing Group. - 2052-4463. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (&gt; 80% of low-frequency coding variants in similar to 82 K Europeans via the exome chip, and similar to 90% of low-frequency non-coding variants in similar to 44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.</p>
  •  
6.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.</p>
  •  
7.
  • Fuchsberger, Christian, et al. (författare)
  • The genetic architecture of type 2 diabetes
  • 2016
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 536:7614, s. 41-47
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of the heritability of this disease. Here, to test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole-genome sequencing in 2,657 European individuals with and without diabetes, and exome sequencing in 12,940 individuals from five ancestry groups. To increase statistical power, we expanded the sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support the idea that lower-frequency variants have a major role in predisposition to type 2 diabetes.</p>
  •  
8.
  • Liu, Dajiang J., et al. (författare)
  • Exome-wide association study of plasma lipids in &gt; 300,000 individuals
  • 2017
  • Ingår i: Nature Genetics. - NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 49:12, s. 1758-1766
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We screened variants on an exome-focused genotyping array in &gt;300,000 participants (replication in &gt;280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-densitylipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (<em>JAK2</em> and <em>A1CF</em>), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the <em>CETP</em> locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (<em>TM6SF2</em> and <em>PNPLA3</em>) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (<em>LPL</em> and <em>ANGPTL4</em>) had no effect on liver fat but decreased risks for both T2D and CAD.</p>
  •  
9.
  • Manning, Alisa, et al. (författare)
  • A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk
  • 2017
  • Ingår i: Diabetes. - American Diabetes Association. - 0012-1797 .- 1939-327X. ; 66:7, s. 2019-2032
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.</p>
  •  
10.
  • Manning, Alisa, et al. (författare)
  • A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk
  • 2017
  • Ingår i: Diabetes. - AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 66:7, s. 2019-2032
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
  • [1]2Nästa
Åtkomst
fritt online (4)
Typ av publikation
tidskriftsartikel (20)
Typ av innehåll
refereegranskat (20)
övrigt vetenskapligt (1)
Författare/redaktör
Lauritzen, Torsten (20)
Pedersen, Oluf, (19)
Hansen, Torben, (19)
Groop, Leif, (15)
Kuusisto, Johanna, (15)
Laakso, Markku, (15)
visa fler...
McCarthy, Mark I (15)
Grarup, Niels, (15)
Langenberg, Claudia (15)
Boehnke, Michael (15)
Jackson, Anne U. (15)
Stringham, Heather M ... (15)
Frayling, Timothy M. (15)
Palmer, Colin N. A. (15)
Grallert, Harald (15)
Froguel, Philippe, (14)
Wareham, Nicholas J (14)
Barroso, Inês (14)
Hattersley, Andrew T (14)
Illig, Thomas (14)
Tuomilehto, Jaakko (14)
Morris, Andrew D (14)
Zeggini, Eleftheria (14)
Bonnycastle, Lori L. (14)
Narisu, Narisu (14)
Scott, Laura J (14)
Tuomi, Tiinamaija, (13)
Nilsson, Peter, (13)
Isomaa, Bo, (13)
Hu, Frank B., (13)
Mohlke, Karen L (13)
Qi, Lu (13)
Prokopenko, Inga (13)
Bergman, Richard N. (13)
Collins, Francis S. (13)
Altshuler, David (13)
Meigs, James B. (13)
Chines, Peter S. (13)
Lyssenko, Valeriya, (12)
Perry, John R. B. (12)
Lindgren, Cecilia M. (12)
Dupuis, Josée (12)
Balkau, Beverley (12)
Florez, Jose C. (12)
Jorgensen, Torben (11)
Gieger, Christian (11)
Robertson, Neil R. (11)
Voight, Benjamin F. (11)
Morris, Andrew P. (11)
Daly, Mark J. (11)
visa färre...
Lärosäte
Lunds universitet (8)
Uppsala universitet (6)
Umeå universitet (5)
Göteborgs universitet (1)
Karolinska Institutet (1)
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (20)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy