SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leal R) "

Sökning: WFRF:(Leal R)

  • Resultat 1-10 av 87
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
4.
  • Thomas, HS, et al. (författare)
  • 2019
  • swepub:Mat__t
  •  
5.
  •  
6.
  •  
7.
  • Buchanan, E. M., et al. (författare)
  • The Psychological Science Accelerator's COVID-19 rapid-response dataset
  • 2023
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data.
  •  
8.
  •  
9.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 87
Typ av publikation
tidskriftsartikel (70)
konferensbidrag (10)
forskningsöversikt (2)
bokkapitel (1)
Typ av innehåll
refereegranskat (78)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Mastromarco, M. (10)
Colonna, N (10)
Gunsing, F (10)
Leeb, H (10)
Paradela, C (10)
Tassan-Got, L (10)
visa fler...
Calviani, M. (10)
Berthoumieux, E. (10)
Diakaki, M. (10)
Guerrero, C. (10)
Schillebeeckx, P. (10)
Vlastou, R. (10)
Audouin, L. (10)
Cerutti, F. (9)
Ferrari, A. (9)
Ventura, A. (9)
Griesmayer, E. (9)
Wright, T. (9)
Schmidt, S. (9)
Andrzejewski, J (9)
Cano-Ott, D (9)
Chiaveri, E (9)
Domingo-Pardo, C (9)
Jericha, E (9)
Kadi, Y (9)
Marganiec, J (9)
Mengoni, A (9)
Milazzo, P M (9)
Pavlik, A (9)
Rauscher, T (9)
Reifarth, R (9)
Rubbia, C (9)
Tagliente, G (9)
Tain, J L (9)
Vannini, G (9)
Vaz, P (9)
Vlachoudis, V (9)
Weigand, M. (9)
Tarrío, Diego (9)
Mendoza, E. (9)
Bosnar, D. (9)
Jenkins, D. G. (9)
Kokkoris, M. (9)
Massimi, C. (9)
Perkowski, J. (9)
Praena, J. (9)
Valenta, S. (9)
Variale, V. (9)
Wallner, A. (9)
Brugger, M. (9)
visa färre...
Lärosäte
Karolinska Institutet (40)
Uppsala universitet (19)
Lunds universitet (13)
Göteborgs universitet (9)
Stockholms universitet (6)
Kungliga Tekniska Högskolan (4)
visa fler...
Umeå universitet (3)
Chalmers tekniska högskola (3)
Luleå tekniska universitet (2)
Linköpings universitet (2)
Malmö universitet (2)
Handelshögskolan i Stockholm (2)
RISE (1)
Högskolan Dalarna (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (86)
Spanska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (23)
Medicin och hälsovetenskap (22)
Samhällsvetenskap (11)
Teknik (5)
Humaniora (2)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy