SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leboyer Marion) "

Sökning: WFRF:(Leboyer Marion)

  • Resultat 1-10 av 56
  • [1]23456Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pilorge, Marion, et al. (författare)
  • Genetic and functional analyses demonstrate a role for abnormal glycinergic signaling in autism
  • 2016
  • Ingår i: Molecular Psychiatry. - : Nature Publishing Group. - 1359-4184. ; 21:7, s. 936-945
  • Tidskriftsartikel (refereegranskat)abstract
    • Autism spectrum disorder (ASD) is a common neurodevelopmental condition characterized by marked genetic heterogeneity. Recent studies of rare structural and sequence variants have identified hundreds of loci involved in ASD, but our knowledge of the overall genetic architecture and the underlying pathophysiological mechanisms remains incomplete. Glycine receptors (GlyRs) are ligand-gated chloride channels that mediate inhibitory neurotransmission in the adult nervous system but exert an excitatory action in immature neurons. GlyRs containing the α2 subunit are highly expressed in the embryonic brain, where they promote cortical interneuron migration and the generation of excitatory projection neurons. We previously identified a rare microdeletion of the X-linked gene GLRA2, encoding the GlyR α2 subunit, in a boy with autism. The microdeletion removes the terminal exons of the gene (GLRA2Δex8–9). Here, we sequenced 400 males with ASD and identified one de novo missense mutation, p.R153Q, absent from controls. In vitro functional analysis demonstrated that the GLRA2Δex8–9 protein failed to localize to the cell membrane, while the R153Q mutation impaired surface expression and markedly reduced sensitivity to glycine. Very recently, an additional de novo missense mutation (p.N136S) was reported in a boy with ASD, and we show that this mutation also reduced cell-surface expression and glycine sensitivity. Targeted glra2 knockdown in zebrafish induced severe axon-branching defects, rescued by injection of wild type but not GLRA2Δex8–9 or R153Q transcripts, providing further evidence for their loss-of-function effect. Glra2 knockout mice exhibited deficits in object recognition memory and impaired long-term potentiation in the prefrontal cortex. Taken together, these results implicate GLRA2 in non-syndromic ASD, unveil a novel role for GLRA2 in synaptic plasticity and learning and memory, and link altered glycinergic signaling to social and cognitive impairments.
  •  
2.
  • Pinto, Dalila, et al. (författare)
  • Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders.
  • 2014
  • Ingår i: American journal of human genetics. - 1537-6605. ; 94:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.
  •  
3.
  • Tabet, Anne-Claude, et al. (författare)
  • Complex nature of apparently balanced chromosomal rearrangements in patients with autism spectrum disorder.
  • 2015
  • Ingår i: Molecular autism. - 2040-2392. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Apparently balanced chromosomal rearrangements can be associated with an abnormal phenotype, including intellectual disability and autism spectrum disorder (ASD). Genome-wide microarrays reveal cryptic genomic imbalances, related or not to the breakpoints, in 25% to 50% of patients with an abnormal phenotype carrying a microscopically balanced chromosomal rearrangement. Here we performed microarray analysis of 18 patients with ASD carrying balanced chromosomal abnormalities to identify submicroscopic imbalances implicated in abnormal neurodevelopment. METHODS: Eighteen patients with ASD carrying apparently balanced chromosomal abnormalities were screened using single nucleotide polymorphism (SNP) arrays. Nine rearrangements were de novo, seven inherited, and two of unknown inheritance. Genomic imbalances were confirmed by fluorescence in situ hybridization and quantitative PCR. RESULTS: We detected clinically significant de novo copy number variants in four patients (22%), including three with de novo rearrangements and one with an inherited abnormality. The sizes ranged from 3.3 to 4.9 Mb; three were related to the breakpoint regions and one occurred elsewhere. We report a patient with a duplication of the Wolf-Hirschhorn syndrome critical region, contributing to the delineation of this rare genomic disorder. The patient has a chromosome 4p inverted duplication deletion, with a 0.5 Mb deletion of terminal 4p and a 4.2 Mb duplication of 4p16.2p16.3. The other cases included an apparently balanced de novo translocation t(5;18)(q12;p11.2) with a 4.2 Mb deletion at the 18p breakpoint, a subject with de novo pericentric inversion inv(11)(p14q23.2) in whom the array revealed a de novo 4.9 Mb deletion in 7q21.3q22.1, and a patient with a maternal inv(2)(q14.2q37.3) with a de novo 3.3 Mb terminal 2q deletion and a 4.2 Mb duplication at the proximal breakpoint. In addition, we identified a rare de novo deletion of unknown significance on a chromosome unrelated to the initial rearrangement, disrupting a single gene, RFX3. CONCLUSIONS: These findings underscore the utility of SNP arrays for investigating apparently balanced chromosomal abnormalities in subjects with ASD or related neurodevelopmental disorders in both clinical and research settings.
  •  
4.
  • Amare, Azmeraw T, et al. (författare)
  • Association of Polygenic Score for Schizophrenia and HLA Antigen and Inflammation Genes With Response to Lithium in Bipolar Affective Disorder: A Genome-Wide Association Study.
  • 2018
  • Ingår i: JAMA psychiatry. - 2168-6238. ; 75:1, s. 65-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium is a first-line mood stabilizer for the treatment of bipolar affective disorder (BPAD). However, the efficacy of lithium varies widely, with a nonresponse rate of up to 30%. Biological response markers are lacking. Genetic factors are thought to mediate treatment response to lithium, and there is a previously reported genetic overlap between BPAD and schizophrenia (SCZ).To test whether a polygenic score for SCZ is associated with treatment response to lithium in BPAD and to explore the potential molecular underpinnings of this association.A total of 2586 patients with BPAD who had undergone lithium treatment were genotyped and assessed for long-term response to treatment between 2008 and 2013. Weighted SCZ polygenic scores were computed at different P value thresholds using summary statistics from an international multicenter genome-wide association study (GWAS) of 36 989 individuals with SCZ and genotype data from patients with BPAD from the Consortium on Lithium Genetics. For functional exploration, a cross-trait meta-GWAS and pathway analysis was performed, combining GWAS summary statistics on SCZ and response to treatment with lithium. Data analysis was performed from September 2016 to February 2017.Treatment response to lithium was defined on both the categorical and continuous scales using the Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder score. The effect measures include odds ratios and the proportion of variance explained.Of the 2586 patients in the study (mean [SD] age, 47.2 [13.9] years), 1478 were women and 1108 were men. The polygenic score for SCZ was inversely associated with lithium treatment response in the categorical outcome, at a threshold P < 5 × 10-2. Patients with BPAD who had a low polygenic load for SCZ responded better to lithium, with odds ratios for lithium response ranging from 3.46 (95% CI, 1.42-8.41) at the first decile to 2.03 (95% CI, 0.86-4.81) at the ninth decile, compared with the patients in the 10th decile of SCZ risk. In the cross-trait meta-GWAS, 15 genetic loci that may have overlapping effects on lithium treatment response and susceptibility to SCZ were identified. Functional pathway and network analysis of these loci point to the HLA antigen complex and inflammatory cytokines.This study provides evidence for a negative association between high genetic loading for SCZ and poor response to lithium in patients with BPAD. These results suggest the potential for translational research aimed at personalized prescribing of lithium.
  •  
5.
  • Chang, Hong, et al. (författare)
  • Identification of a Bipolar Disorder Vulnerable Gene CHDH at 3p21.1.
  • 2017
  • Ingår i: Molecular neurobiology. - 1559-1182. ; 54:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide analysis (GWA) is an effective strategy to discover extreme effects surpassing genome-wide significant levels in studying complex disorders; however, when sample size is limited, the true effects may fail to achieve genome-wide significance. In such case, there may be authentic results among the pools of nominal candidates, and an alternative approach is to consider nominal candidates but are replicable across different samples. Here, we found that mRNA expression of the choline dehydrogenase gene (CHDH) was uniformly upregulated in the brains of bipolar disorder (BPD) patients compared with healthy controls across different studies. Follow-up genetic analyses of CHDH variants in multiple independent clinical datasets (including 11,564 cases and 17,686 controls) identified a risk SNP rs9836592 showing consistent associations with BPD (P meta = 5.72 × 10(-4)), and the risk allele indicated an increased CHDH expression in multiple neuronal tissues (lowest P = 6.70 × 10(-16)). These converging results may identify a nominal but true BPD susceptibility gene CHDH. Further exploratory analysis revealed suggestive associations of rs9836592 with childhood intelligence (P = 0.044) and educational attainment (P = 0.0039), a "proxy phenotype" of general cognitive abilities. Intriguingly, the CHDH gene is located at chromosome 3p21.1, a risk region implicated in previous BPD genome-wide association studies (GWAS), but CHDH is lying outside of the core GWAS linkage disequilibrium (LD) region, and our studied SNP rs9836592 is ∼1.2 Mb 3' downstream of the previous GWAS loci (e.g., rs2251219) with no LD between them; thus, the association observed here is unlikely a reflection of previous GWAS signals. In summary, our results imply that CHDH may play a previously unknown role in the etiology of BPD and also highlight the informative value of integrating gene expression and genetic code in advancing our understanding of its biological basis.
  •  
6.
  • de Jong, Simone, et al. (författare)
  • Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder
  • 2018
  • Ingår i: Communications Biology. - : Nature Publishing Group. - 2399-3642. ; 1
  • Tidskriftsartikel (refereegranskat)abstract
    • Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n ~ 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders.
  •  
7.
  • Henningsson, Susanne, 1977, et al. (författare)
  • Possible association between the androgen receptor gene and autism spectrum disorder.
  • 2009
  • Ingår i: Psychoneuroendocrinology. - : Elsevier. - 0306-4530 .- 1873-3360. ; 34:5, s. 752-761
  • Tidskriftsartikel (refereegranskat)abstract
    • Autism is a highly heritable disorder but the specific genes involved remain largely unknown. The higher prevalence of autism in men than in women, in conjunction with a number of other observations, has led to the suggestion that prenatal brain exposure to androgens may be of importance for the development of this condition. Prompted by this hypothesis, we investigated the potential influence of variation in the androgen receptor (AR) gene on the susceptibility for autism. To this end, 267 subjects with autism spectrum disorder and 617 controls were genotyped for three polymorphisms in exon 1 of the AR gene: the CAG repeat, the GGN repeat and the rs6152 SNP. In addition, parents and affected siblings were genotyped for 118 and 32 of the cases, respectively. Case-control comparisons revealed higher prevalence of short CAG alleles as well as of the A allele of the rs6152 SNP in female cases than in controls, but revealed no significant differences with respect to the GGN repeat. Analysis of the 118 families using transmission disequilibrium test, on the other hand, suggested an association with the GGN polymorphism, the rare 20-repeat allele being undertransmitted to male cases and the 23-repeat allele being overtransmitted to female cases. Sequencing of the AR gene in 46 patients revealed no mutations or rare variants. The results lend some support for an influence of the studied polymorphisms on the susceptibility for autism, but argue against the possibility that mutations in the AR gene are common in subjects with this condition.
  •  
8.
  •  
9.
  • Hou, Liping, et al. (författare)
  • Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder.
  • 2016
  • Ingår i: Human molecular genetics. - 1460-2083. ; 25:15, s. 3383-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is a genetically complex mental illness characterized by severe oscillations of mood and behavior. Genome-wide association studies (GWAS) have identified several risk loci that together account for a small portion of the heritability. To identify additional risk loci, we performed a two-stage meta-analysis of >9 million genetic variants in 9,784 bipolar disorder patients and 30,471 controls, the largest GWAS of BD to date. In this study, to increase power we used ∼2,000 lithium-treated cases with a long-term diagnosis of BD from the Consortium on Lithium Genetics, excess controls, and analytic methods optimized for markers on the X-chromosome. In addition to four known loci, results revealed genome-wide significant associations at two novel loci: an intergenic region on 9p21.3 (rs12553324, p = 5.87 × 10(-9); odds ratio = 1.12) and markers within ERBB2 (rs2517959, p = 4.53 × 10(-9); odds ratio = 1.13). No significant X-chromosome associations were detected and X-linked markers explained very little BD heritability. The results add to a growing list of common autosomal variants involved in BD and illustrate the power of comparing well-characterized cases to an excess of controls in GWAS.
  •  
10.
  • Kalman, Janos L, et al. (författare)
  • Investigating polygenic burden in age at disease onset in bipolar disorder: Findings from an international multicentric study.
  • 2019
  • Ingår i: Bipolar disorders. - 1399-5618. ; 21:1, s. 68-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) with early disease onset is associated with an unfavorable clinical outcome and constitutes a clinically and biologically homogenous subgroup within the heterogeneous BD spectrum. Previous studies have found an accumulation of early age at onset (AAO) in BD families and have therefore hypothesized that there is a larger genetic contribution to the early-onset cases than to late onset BD. To investigate the genetic background of this subphenotype, we evaluated whether an increased polygenic burden of BD- and schizophrenia (SCZ)-associated risk variants is associated with an earlier AAO in BD patients.A total of 1995 BD type 1 patients from the Consortium of Lithium Genetics (ConLiGen), PsyCourse and Bonn-Mannheim samples were genotyped and their BD and SCZ polygenic risk scores (PRSs) were calculated using the summary statistics of the Psychiatric Genomics Consortium as a training data set. AAO was either separated into onset groups of clinical interest (childhood and adolescence [≤18 years] vs adulthood [>18 years]) or considered as a continuous measure. The associations between BD- and SCZ-PRSs and AAO were evaluated with regression models.BD- and SCZ-PRSs were not significantly associated with age at disease onset. Results remained the same when analyses were stratified by site of recruitment.The current study is the largest conducted so far to investigate the association between the cumulative BD and SCZ polygenic risk and AAO in BD patients. The reported negative results suggest that such a polygenic influence, if there is any, is not large, and highlight the importance of conducting further, larger scale studies to obtain more information on the genetic architecture of this clinically relevant phenotype.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 56
  • [1]23456Nästa
Typ av publikation
tidskriftsartikel (54)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (55)
övrigt vetenskapligt (1)
Författare/redaktör
Leboyer, Marion (56)
Gillberg, Christophe ... (40)
Delorme, Richard (32)
Betancur, Catalina (32)
Bourgeron, Thomas (30)
Nygren, Gudrun, 1957 (22)
visa fler...
Råstam, Maria, 1948 (18)
Chaste, Pauline (16)
Anckarsäter, Henrik, ... (15)
Jamain, Stephane (15)
Leboyer, M. (13)
Mouren-Simeoni, Mari ... (12)
Scherer, Stephen W (11)
Durand, Christelle M (11)
Gillberg, I Carina, ... (10)
Landén, Mikael, 1966 (9)
Landen, M (9)
Cichon, Sven (9)
Rietschel, Marcella (9)
Cichon, S (9)
Rietschel, M (9)
Råstam, Maria (9)
Bellivier, F. (9)
Jamain, S. (9)
Grigoroiu-Serbanescu ... (9)
Reif, A. (9)
Schulze, TG (9)
Forstner, AJ (9)
Bellivier, Frank (9)
Forstner, Andreas J (9)
Grigoroiu-Serbanescu ... (9)
Reif, Andreas (9)
Schulze, Thomas G (9)
Maestrini, Elena (9)
Buxbaum, Joseph D (9)
Monaco, Anthony P (9)
Mitchell, PB (8)
Nothen, MM (8)
Rouleau, Guy A. (8)
Etain, B. (8)
Étain, Bruno (8)
Mitchell, Philip B (8)
Pinto, Dalila (8)
Bacchelli, Elena (8)
Klauck, Sabine M (8)
Vincent, John B (8)
Szatmari, Peter (8)
Coleman, Mary (8)
Fauchereau, Fabien (8)
Lemière, Nathalie (8)
visa färre...
Lärosäte
Göteborgs universitet (52)
Lunds universitet (25)
Karolinska Institutet (9)
Umeå universitet (4)
Uppsala universitet (1)
Språk
Engelska (56)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (52)
Naturvetenskap (1)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy