SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leeb Tosso) ;pers:(Lohi Hannes)"

Sökning: WFRF:(Leeb Tosso) > Lohi Hannes

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Drögemüller, Cord, et al. (författare)
  • A mutation in hairless dogs implicates FOXI3 in ectodermal development
  • 2008
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 321:5895, s. 1462-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mexican and Peruvian hairless dogs and Chinese crested dogs are characterized by missing hair and teeth, a phenotype termed canine ectodermal dysplasia (CED). CED is inherited as a monogenic autosomal semidominant trait. With genomewide association analysis we mapped the CED mutation to a 102-kilo-base pair interval on chromosome 17. The associated interval contains a previously uncharacterized member of the forkhead box transcription factor family (FOXI3), which is specifically expressed in developing hair and teeth. Mutation analysis revealed a frameshift mutation within the FOXI3 coding sequence in hairless dogs. Thus, we have identified FOXI3 as a regulator of ectodermal development.
  •  
2.
  • Jagannathan, Vidhya, et al. (författare)
  • A Mutation in the SUV39H2 Gene in Labrador Retrievers with Hereditary Nasal Parakeratosis (HNPK) Provides Insights into the Epigenetics of Keratinocyte Differentiation
  • 2013
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 9:10, s. e1003848-
  • Tidskriftsartikel (refereegranskat)abstract
    • Hereditary nasal parakeratosis (HNPK), an inherited monogenic autosomal recessive skin disorder, leads to crusts and fissures on the nasal planum of Labrador Retrievers. We performed a genome-wide association study (GWAS) using 13 HNPK cases and 23 controls. We obtained a single strong association signal on chromosome 2 (p(raw) = 4.4x10(-14)). The analysis of shared haplotypes among the 13 cases defined a critical interval of 1.6 Mb with 25 predicted genes. We re-sequenced the genome of one case at 38x coverage and detected 3 non-synonymous variants in the critical interval with respect to the reference genome assembly. We genotyped these variants in larger cohorts of dogs and only one was perfectly associated with the HNPK phenotype in a cohort of more than 500 dogs. This candidate causative variant is a missense variant in the SUV39H2 gene encoding a histone 3 lysine 9 (H3K9) methyltransferase, which mediates chromatin silencing. The variant c.972T>G is predicted to change an evolutionary conserved asparagine into a lysine in the catalytically active domain of the enzyme (p.N324K). We further studied the histopathological alterations in the epidermis in vivo. Our data suggest that the HNPK phenotype is not caused by hyperproliferation, but rather delayed terminal differentiation of keratinocytes. Thus, our data provide evidence that SUV39H2 is involved in the epigenetic regulation of keratinocyte differentiation ensuring proper stratification and tight sealing of the mammalian epidermis.
  •  
3.
  • Lequarre, Anne-Sophie, et al. (författare)
  • LUPA : A European initiative taking advantage of the canine genome architecture for unravelling complex disorders in both human and dogs
  • 2011
  • Ingår i: The Veterinary Journal. - : Elsevier BV. - 1090-0233 .- 1532-2971. ; 189:2, s. 155-159
  • Forskningsöversikt (refereegranskat)abstract
    • The domestic dog offers a unique opportunity to explore the genetic basis of disease, morphology and behaviour. Humans share many diseases with our canine companions, making dogs an ideal model organism for comparative disease genetics. Using newly developed resources, genome-wide association studies in dog breeds are proving to be exceptionally powerful. Towards this aim, veterinarians and geneticists from 12 European countries are collaborating to collect and analyse the DNA from large cohorts of dogs suffering from a range of carefully defined diseases of relevance to human health. This project, named LUPA, has already delivered considerable results. The consortium has collaborated to develop a new high density single nucleotide polymorphism (SNP) array. Mutations for four monogenic diseases have been identified and the information has been utilised to find mutations in human patients. Several complex diseases have been mapped and fine mapping is underway. These findings should ultimately lead to a better understanding of the molecular mechanisms underlying complex diseases in both humans and their best friend.
  •  
4.
  • Meadows, Jennifer, et al. (författare)
  • Genome sequencing of 2000 canids by the Dog10K consortium advances the understanding of demography, genome function and architecture
  • 2023
  • Ingår i: Genome Biology. - : BioMed Central (BMC). - 1465-6906 .- 1474-760X. ; 24
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 x data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function.Results: We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection.Conclusions: We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.
  •  
5.
  • Seppala, Eija H., et al. (författare)
  • LGI2 Truncation Causes a Remitting Focal Epilepsy in Dogs
  • 2011
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 7:7, s. e1002194-
  • Tidskriftsartikel (refereegranskat)abstract
    • One quadrillion synapses are laid in the first two years of postnatal construction of the human brain, which are then pruned until age 10 to 500 trillion synapses composing the final network. Genetic epilepsies are the most common neurological diseases with onset during pruning, affecting 0.5% of 2-10-year-old children, and these epilepsies are often characterized by spontaneous remission. We previously described a remitting epilepsy in the Lagotto romagnolo canine breed. Here, we identify the gene defect and affected neurochemical pathway. We reconstructed a large Lagotto pedigree of around 34 affected animals. Using genome-wide association in 11 discordant sib-pairs from this pedigree, we mapped the disease locus to a 1.7 Mb region of homozygosity in chromosome 3 where we identified a protein-truncating mutation in the Lgi2 gene, a homologue of the human epilepsy gene LGI1. We show that LGI2, like LGI1, is neuronally secreted and acts on metalloproteinase-lacking members of the ADAM family of neuronal receptors, which function in synapse remodeling, and that LGI2 truncation, like LGI1 truncations, prevents secretion and ADAM interaction. The resulting epilepsy onsets at around seven weeks (equivalent to human two years), and remits by four months (human eight years), versus onset after age eight in the majority of human patients with LGI1 mutations. Finally, we show that Lgi2 is expressed highly in the immediate post-natal period until halfway through pruning, unlike Lgi1, which is expressed in the latter part of pruning and beyond. LGI2 acts at least in part through the same ADAM receptors as LGI1, but earlier, ensuring electrical stability (absence of epilepsy) during pruning years, preceding this same function performed by LGI1 in later years. LGI2 should be considered a candidate gene for common remitting childhood epilepsies, and LGI2-to-LGI1 transition for mechanisms of childhood epilepsy remission.
  •  
6.
  • Wucher, Valentin, et al. (författare)
  • FEELnc : a tool for long non-coding RNA annotation and its application to the dog transcriptome
  • 2017
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 45:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole transcriptome sequencing (RNA-seq) has become a standard for cataloguing and monitoring RNA populations. One of the main bottlenecks, however, is to correctly identify the different classes of RNAs among the plethora of reconstructed transcripts, particularly those that will be translated (mRNAs) from the class of long non-coding RNAs (lncRNAs). Here, we present FEELnc (FlExible Extraction of LncRNAs), an alignment-free program that accurately annotates lncRNAs based on a Random Forest model trained with general features such as multi k-mer frequencies and relaxed open reading frames. Benchmarking versus five state-of-the-art tools shows that FEELnc achieves similar or better classification performance on GENCODE and NONCODE data sets. The program also provides specific modules that enable the user to fine-tune classification accuracy, to formalize the annotation of lncRNA classes and to identify lncRNAs even in the absence of a training set of non-coding RNAs. We used FEELnc on a real data set comprising 20 canine RNA-seq samples produced by the European LUPA consortium to substantially expand the canine genome annotation to include 10 374 novel lncRNAs and 58 640 mRNA transcripts. FEELnc moves beyond conventional coding potential classifiers by providing a standardized and complete solution for annotating lncRNAs and is freely available at https://github.com/tderrien/FEELnc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (5)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Leeb, Tosso (6)
Lindblad-Toh, Kersti ... (5)
André, Catherine (3)
Hitte, Christophe (3)
Jagannathan, Vidhya (3)
visa fler...
Fredholm, Merete (2)
Karlsson, Elinor K. (2)
Andersson, Leif (1)
Larson, Greger (1)
Johnson, Jeremy (1)
Racimo, Fernando (1)
Webster, Matthew T. (1)
Ostrander, Elaine A. (1)
Wayne, Robert K. (1)
Georges, Michel (1)
Savolainen, Peter (1)
Zhang, Ya-ping (1)
Bergvall, Kerstin (1)
Meadows, Jennifer (1)
Alföldi, Jessica (1)
Perloski, Michele (1)
Steffen, Frank (1)
Wang, Chao (1)
Bianchi, Matteo (1)
Dietschi, Elisabeth (1)
Ginja, Catarina (1)
Pires, Ana Elisabete (1)
Christmas, Matthew (1)
Bougiouri, Katia (1)
Kalthoff, Daniela C. (1)
Derrien, Thomas (1)
Wucher, Valentin (1)
Cadieu, Edouard (1)
Hedan, Benoit (1)
Le Beguec, Celine (1)
Botherel, Nadine (1)
Cirera, Susanna (1)
Buckley, Reuben M. (1)
Parker, Heidi G (1)
Droegemueller, Cord (1)
Drögemüller, Cord (1)
Hytönen, Marjo K (1)
Dolf, Gaudenz (1)
Sainio, Kirsi (1)
Nicholas, Frank W. (1)
Tammen, Imke (1)
Frantz, Laurent A.F. (1)
Lequarre, Anne-Sophi ... (1)
Tengvall, Katarina (1)
visa färre...
Lärosäte
Uppsala universitet (6)
Kungliga Tekniska Högskolan (1)
Naturhistoriska riksmuseet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Lantbruksvetenskap (3)
Naturvetenskap (1)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy