SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lehtio Janne) ;lar1:(umu)"

Sökning: WFRF:(Lehtio Janne) > Umeå universitet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Idborg, Helena, et al. (författare)
  • STRATIFICATION OF SLE PATIENTS FOR IMPROVED DIAGNOSIS AND TREATMENT
  • 2013
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 72, s. A80-A80
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background. Systemic autoimmune diseases (SAIDs) affect about 2% of the population in Western countries. Sufficient diagnostic criteria are lacking due to the heterogeneity within diagnostic categories and apparent overlap regarding symptoms and patterns of autoantibodies between different diagnoses. Systemic lupus erythematosus (SLE) is regarded as a prototype for SAIDs and we hypothesise that subgroups of patients with SLE may have different pathogenesis and should consequently be subject to different treatment strategies.Objectives. Our goal is to find new biomarkers to be used for the identification of more homogenous patient populations for clinical trials and to identify sub-groups of patients with high risk of for example cardiovascular events.Methods. In this study we have utilised 320 SLE patients from the Karolinska lupus cohort and 320 age and gender matched controls. The SLE cohort was characterised based on clinical, genetic and serological data and combined by multivariate data analysis in a systems biology approach to study possible subgroups. A pilot study was designed to verify and investigate suggested subgroups of SLE. Two main subgroups were defined: One group was defined as having SSA and SSB antibodies and a negative lupus anticoagulant test (LAC), i.e., a “Sjögren-like” group. The other group was defined as being negative for SSA and SSB antibodies but positive in the LAC test.i.e. an “APS-like” group. EDTA-plasma from selected patients in these two groups and controls were analysed using a mass spectrometry (MS) based proteomic and metabolomic approach. Pathway analysis was then performed on the obtained data.Results. Our pilot study showed that differences in levels of proteins and metabolites could separate disease groups from population controls. The profile/pattern of involved factors in the complement system supported a division of SLE in two major subgroups, although each individual factor was not significantly different between subgroups. Complement factor 2 (C2) and membrane attack complex (MAC) were analysed in the entire cohort with complementary methods and C2 verifies our results while the levels of MAC did not differ between SLE subgroups. The generated metabolomics data clearly separated SLE patients from controls in both gas chromatography (GC)-MS and liquid chromatography (LC)-MS data. We found for example that tryptophan was lower in the SLE patients compared to controls.Conclusions. Our systems biology approach may lead to a better understanding of the disease and its pathogenesis, and assigning patients into subgroups will result in improved diagnosis and better outcome measures of SLE.
  •  
2.
  • Lindahl, Anna, et al. (författare)
  • Discrimination of pancreatic cancer and pancreatitis by LC-MS metabolomics
  • 2017
  • Ingår i: Metabolomics. - : Springer. - 1573-3882 .- 1573-3890. ; 13:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Pancreatic ductal adenocarcinoma (PDAC) is the fifth most common cause of cancer-related death in Europe with a 5-year survival rate of <5%. Chronic pancreatitis (CP) is a risk factor for PDAC development, but in the majority of cases malignancy is discovered too late for curative treatment. There is at present no reliable diagnostic marker for PDAC available.Objectives: The aim of the study was to identify single blood-based metabolites or a panel of metabolites discriminating PDAC and CP using liquid chromatography-mass spectrometry (LC-MS).Methods: A discovery cohort comprising PDAC (n = 44) and CP (n = 23) samples was analyzed by LC-MS followed by univariate (Student’s t test) and multivariate (orthogonal partial least squares-discriminant analysis (OPLS-DA)) statistics. Discriminative metabolite features were subject to raw data examination and identification to ensure high feature quality. Their discriminatory power was then confirmed in an independent validation cohort including PDAC (n = 20) and CP (n = 31) samples.Results: Glycocholic acid, N-palmitoyl glutamic acid and hexanoylcarnitine were identified as single markers discriminating PDAC and CP by univariate analysis. OPLS-DA resulted in a panel of five metabolites including the aforementioned three metabolites as well as phenylacetylglutamine (PAGN) and chenodeoxyglycocholate.Conclusion: Using LC-MS-based metabolomics we identified three single metabolites and a five-metabolite panel discriminating PDAC and CP in two independent cohorts. Although further study is needed in larger cohorts, the metabolites identified are potentially of use in PDAC diagnostics.
  •  
3.
  • Lindahl, Anna, et al. (författare)
  • Tuning Metabolome Coverage in Reversed Phase LC-MS Metabolomics of MeOH Extracted Samples Using the Reconstitution Solvent Composition
  • 2017
  • Ingår i: Analytical Chemistry. - : AMER CHEMICAL SOC. - 0003-2700 .- 1520-6882. ; 89:14, s. 7356-7364
  • Tidskriftsartikel (refereegranskat)abstract
    • Considering the physicochemical diversity of the metabolome, untargeted metabolomics will inevitably discriminate against certain compound classes. Efforts are nevertheless made to maximize the metabolome coverage. Contrary to the main steps of a typical liquid chromatography-mass spectrometry (LC-MS) metabolomics workflow, such as metabolite extraction, the sample reconstitution step has not been optimized for maximal metabolome coverage. This sample concentration step typically occurs after metabolite extraction, when dried samples are reconstituted in a solvent for injection on column. The aim of this study was to evaluate the impact of the sample reconstitution solvent composition on metabolome coverage in untargeted LCMS metabolomics. Lysogeny Broth medium samples reconstituted in MeOH/H2O ratios ranging from 0 to 100% MeOH and analyzed with untargeted reversed phase LC-MS showed that the highest number of metabolite features (n = 1500) was detected in samples reconstituted in 100% H2O. As compared to a commonly used reconstitution solvent mixture of 50/50 MeOH/H2O, our results indicate that the small fraction of compounds increasing in peak area response by the addition of MeOH to H2O, 5%, is outweighed by the fraction of compounds with decreased response, 57%. We evaluated our results on human serum samples from lymphoma patients and healthy control subjects. Reconstitution in 100% H2O resulted in a higher number of significant metabolites discriminating between these two groups than both 50% and 100% MeOH. These findings show that the sample reconstitution step has a clear impact on the metabolome coverage of MeOH extracted biological samples, highlighting the importance of the reconstitution solvent composition for untargeted discovery metabolomics.
  •  
4.
  • Nordin, Joel Z., et al. (författare)
  • Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties
  • 2015
  • Ingår i: Nanomedicine. - : Elsevier BV. - 1549-9634 .- 1549-9642. ; 11:4, s. 879-883
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles (EVs) are natural nanoparticles that mediate intercellular transfer of RNA and proteins and are of great medical interest; serving as novel biomarkers and potential therapeutic agents. However, there is little consensus on the most appropriate method to isolate high-yield and high-purity EVs from various biological fluids. Here, we describe a systematic comparison between two protocols for EV purification: ultrafiltration with subsequent liquid chromatography (UF-LC) and differential ultracentrifugation (UC). A significantly higher EV yield resulted from UF-LC as compared to UC, without affecting vesicle protein composition. Importantly, we provide novel evidence that, in contrast to UC-purified EVs, the biophysical properties of UF-LC-purified EVs are preserved, leading toadifferent in vivo biodistribution, with less accumulation in lungs. Finally, we show that UF-LC is scalable and adaptable for EV isolation from complex media types such as stem cell media, which is of huge significance for future clinical applications involving EVs.
  •  
5.
  • Stäubert, Claudia, et al. (författare)
  • Rewired metabolism in drug-resistant leukemia cells : a metabolic switch hallmarked by reduced dependence on exogenous glutamine
  • 2015
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 290:13, s. 8348-8359
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer cells that escape induction therapy are a major cause of relapse. Understanding metabolic alterations associated with drug resistance opens up unexplored opportunities for the development of new therapeutic strategies. Here, we applied a broad spectrum of technologies including RNA sequencing, global untargeted metabolomics, and stable isotope labeling mass spectrometry to identify metabolic changes in P-glycoprotein overexpressing T-cell acute lymphoblastic leukemia (ALL) cells, which escaped a therapeutically relevant daunorubicin treatment. We show that compared with sensitive ALL cells, resistant leukemia cells possess a fundamentally rewired central metabolism characterized by reduced dependence on glutamine despite a lack of expression of glutamate-ammonia ligase (GLUL), a higher demand for glucose and an altered rate of fatty acid beta-xidation, accompanied by a decreased pantothenic acid uptake capacity. We experimentally validate our findings by selectively targeting components of this metabolic switch, using approved drugs and starvation approaches followed by cell viability analyses in both the ALL cells and in an acute myeloid leukemia (AML) sensitive/resistant cell line pair. We demonstrate how comparative metabolomics andRNAexpression profiling of drug-sensitive and -resistant cells expose targetable metabolic changes and potential resistance markers. Our results show that drug resistance is associated with significant metabolic costs in cancer cells, which could be exploited using new therapeutic strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy