SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lehtio Janne) ;pers:(Oliynyk Ganna)"

Sökning: WFRF:(Lehtio Janne) > Oliynyk Ganna

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Idborg, Helena, et al. (författare)
  • STRATIFICATION OF SLE PATIENTS FOR IMPROVED DIAGNOSIS AND TREATMENT
  • 2013
  • Ingår i: Annals of the Rheumatic Diseases. - : BMJ. - 0003-4967 .- 1468-2060. ; 72, s. A80-A80
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Background. Systemic autoimmune diseases (SAIDs) affect about 2% of the population in Western countries. Sufficient diagnostic criteria are lacking due to the heterogeneity within diagnostic categories and apparent overlap regarding symptoms and patterns of autoantibodies between different diagnoses. Systemic lupus erythematosus (SLE) is regarded as a prototype for SAIDs and we hypothesise that subgroups of patients with SLE may have different pathogenesis and should consequently be subject to different treatment strategies.Objectives. Our goal is to find new biomarkers to be used for the identification of more homogenous patient populations for clinical trials and to identify sub-groups of patients with high risk of for example cardiovascular events.Methods. In this study we have utilised 320 SLE patients from the Karolinska lupus cohort and 320 age and gender matched controls. The SLE cohort was characterised based on clinical, genetic and serological data and combined by multivariate data analysis in a systems biology approach to study possible subgroups. A pilot study was designed to verify and investigate suggested subgroups of SLE. Two main subgroups were defined: One group was defined as having SSA and SSB antibodies and a negative lupus anticoagulant test (LAC), i.e., a “Sjögren-like” group. The other group was defined as being negative for SSA and SSB antibodies but positive in the LAC test.i.e. an “APS-like” group. EDTA-plasma from selected patients in these two groups and controls were analysed using a mass spectrometry (MS) based proteomic and metabolomic approach. Pathway analysis was then performed on the obtained data.Results. Our pilot study showed that differences in levels of proteins and metabolites could separate disease groups from population controls. The profile/pattern of involved factors in the complement system supported a division of SLE in two major subgroups, although each individual factor was not significantly different between subgroups. Complement factor 2 (C2) and membrane attack complex (MAC) were analysed in the entire cohort with complementary methods and C2 verifies our results while the levels of MAC did not differ between SLE subgroups. The generated metabolomics data clearly separated SLE patients from controls in both gas chromatography (GC)-MS and liquid chromatography (LC)-MS data. We found for example that tryptophan was lower in the SLE patients compared to controls.Conclusions. Our systems biology approach may lead to a better understanding of the disease and its pathogenesis, and assigning patients into subgroups will result in improved diagnosis and better outcome measures of SLE.
  •  
2.
  • Zirath, Hanna, et al. (författare)
  • MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 110:25, s. 10258-10263
  • Tidskriftsartikel (refereegranskat)abstract
    • The MYC genes are the most frequently activated oncogenes in human tumors and are hence attractive therapeutic targets. MYCN amplification leads to poor clinical outcome in childhood neuroblastoma, yet strategies to modulate the function of MYCN do not exist. Here we show that 10058-F4, a characterized c-MYC/Max inhibitor, also targets the MYCN/Max interaction, leading to cell cycle arrest, apoptosis, and neuronal differentiation in MYCN-amplified neuroblastoma cells and to increased survival of MYCN transgenic mice. We also report the discovery that inhibition of MYC is accompanied by accumulation of intracellular lipid droplets in tumor cells as a direct consequence of mitochondrial dysfunction. This study expands on the current knowledge of how MYC proteins control the metabolic reprogramming of cancer cells, especially highlighting lipid metabolism and the respiratory chain as important pathways involved in neuroblastoma pathogenesis. Together our data support direct MYC inhibition as a promising strategy for the treatment of MYC-driven tumors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy