SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leigh James) ;hsvcat:1"

Sökning: WFRF:(Leigh James) > Naturvetenskap

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Falster, Daniel, et al. (författare)
  • AusTraits, a curated plant trait database for the Australian flora
  • 2021
  • Ingår i: Scientific Data. - : Nature Portfolio. - 2052-4463. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
  •  
2.
  • Lozano, Rafael, et al. (författare)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
3.
  • Tranvik, Lars J., et al. (författare)
  • Lakes and reservoirs as regulators of carbon cycling and climate
  • 2009
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 54:6:2, s. 2298-2314
  • Forskningsöversikt (refereegranskat)abstract
    • We explore the role of lakes in carbon cycling and global climate, examine the mechanisms influencing carbon pools and transformations in lakes, and discuss how the metabolism of carbon in the inland waters is likely to change in response to climate. Furthermore, we project changes as global climate change in the abundance and spatial distribution of lakes in the biosphere, and we revise the estimate for the global extent of carbon transformation in inland waters. This synthesis demonstrates that the global annual emissions of carbon dioxide from inland waters to the atmosphere are similar in magnitude to the carbon dioxide uptake by the oceans and that the global burial of organic carbon in inland water sediments exceeds organic carbon sequestration on the ocean floor. The role of inland waters in global carbon cycling and climate forcing may be changed by human activities, including construction of impoundments, which accumulate large amounts of carbon in sediments and emit large amounts of methane to the atmosphere. Methane emissions are also expected from lakes on melting permafrost. The synthesis presented here indicates that (1) inland waters constitute a significant component of the global carbon cycle, (2) their contribution to this cycle has significantly changed as a result of human activities, and (3) they will continue to change in response to future climate change causing decreased as well as increased abundance of lakes as well as increases in the number of aquatic impoundments.
  •  
4.
  • Johnston, James B., et al. (författare)
  • Targeting the EGFR pathway for cancer therapy
  • 2006
  • Ingår i: Current Medicinal Chemistry. - : Bentham Science Publishers Ltd.. - 0929-8673 .- 1875-533X. ; 13:29, s. 3483-3492
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical studies have shown that HER-2/Neu is over-expressed in up to one-third of patients with a variety of cancers, including B-cell acute lymphoblastic leukemia (B-ALL), breast cancer and lung cancer, and that these patients are frequently resistant to conventional chemo-therapies. Additionally, in most patients with multiple myeloma, the malignant cells over-express a number of epidermal growth factor receptors (EGFR)s and their ligands, HB-EGF and amphiregulin, thus this growth-factor family may be an important aspect in the patho-biology of this disease. These and other, related findings have provided the rationale for the targeting of the components of the EGFR signaling pathways for cancer therapy. Below we discuss various aspects of EGFR-targeted therapies mainly in hematologic malignancies, lung cancer and breast cancer. Beside novel therapeutic approaches, we also discuss specific side effects associated with the therapeutic inhibition of components of the EGFR-pathways. Alongside small inhibitors, such as Lapatinib (Tykerb, GW572016), Gefitinib (Iressa, Z131839), and Erlotinib (Tarceva, OSI-774), a significant part of the review is also dedicated to therapeutic antibodies (e.g.: Trastuzumab / Herceptin, Pertuzumab / Omnitarg / rhuMab-2C4, Cetuximab / Erbitux / IMC-C225, Panitumumab / Abenix / ABX-EGF, and also ZD6474). In addition, we summarize, both current therapy development driven by antibody-based targeting of the EGFR-dependent signaling pathways, and furthermore, we provide a background on the history and the development of therapeutic antibodies.
  •  
5.
  • Tinetti, G., et al. (författare)
  • A chemical survey of exoplanets with ARIEL
  • 2018
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 46:1, s. 135-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (4)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (5)
Författare/redaktör
Viti, Serena (1)
Larsson, Anders (1)
Ärnlöv, Johan, 1970- (1)
Hankey, Graeme J. (1)
Wijeratne, Tissa (1)
Laurion, Isabelle (1)
visa fler...
Striegl, Robert G. (1)
Tranvik, Lars J. (1)
Sahebkar, Amirhossei ... (1)
Hassankhani, Hadi (1)
Liu, Yang (1)
Bassat, Quique (1)
Mitchell, Philip B (1)
McKee, Martin (1)
Madotto, Fabiana (1)
Gomez, H. L. (1)
Koyanagi, Ai (1)
Castro, Franz (1)
Aboyans, Victor (1)
Koul, Parvaiz A. (1)
Edvardsson, David (1)
Min, M. (1)
Dominik, C. (1)
Vandenbussche, B. (1)
Gear, W. K. (1)
Pilbratt, G.L. (1)
Cooper, Cyrus (1)
Pisano, G. (1)
Tucker, C. (1)
Norgaard-Nielsen, H. ... (1)
Savini, G. (1)
Weiderpass, Elisabet ... (1)
Dhimal, Meghnath (1)
Vaduganathan, Muthia ... (1)
Ade, Peter (1)
Sheikh, Aziz (1)
Weyhenmeyer, Gesa A. (1)
Adhikari, Tara Balla ... (1)
Acharya, Pawan (1)
Gething, Peter W. (1)
Hay, Simon I. (1)
Tripathy, Srikanth P ... (1)
Schutte, Aletta E. (1)
Afshin, Ashkan (1)
Cornaby, Leslie (1)
Mullany, Erin C. (1)
Abbafati, Cristiana (1)
Abebe, Zegeye (1)
Afarideh, Mohsen (1)
Agrawal, Sutapa (1)
visa färre...
Lärosäte
Uppsala universitet (2)
Linköpings universitet (2)
Chalmers tekniska högskola (2)
Umeå universitet (1)
Lunds universitet (1)
Södertörns högskola (1)
visa fler...
Karolinska Institutet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (2)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy