SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Leonardo C. D.) "

Sökning: WFRF:(Leonardo C. D.)

  • Resultat 1-10 av 54
  • [1]23456Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acciari, V. A., et al. (författare)
  • Radio Imaging of the Very-High-Energy gamma-Ray Emission Region in the Central Engine of a Radio Galaxy
  • 2009
  • Ingår i: Science. - 0036-8075 .- 1095-9203. ; 325:5939, s. 444-448
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.</p>
  •  
2.
  • Abramowski, A., et al. (författare)
  • The 2010 very high energy gamma-RAY flare and 10 years of multi-wavelength observations of M 87
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 746:2, s. 151
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3-6) x 10(9) M-circle dot) provides a unique opportunity to investigate the origin of very high energy (VHE; E &gt; 100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of tau(rise)(d) = (1.69 +/- 0.30) days and tau(decay)(d) = (0.611 +/- 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (similar to day), peak fluxes (Phi(&gt;0.35 TeV) similar or equal to (1-3) x 10(-11) photons cm(-2) s(-1)), and VHE spectra. VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken similar to 3 days after the peak of the VHE gamma-ray emission reveal an enhanced flux from the core (flux increased by factor similar to 2; variability timescale &lt;2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M 87, spanning from radio to VHE and including data from Hubble Space Telescope, Liverpool Telescope, Very Large Array, and European VLBI Network, is used to further investigate the origin of the VHE gamma-ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kiloparsec jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE gamma-ray emission from M 87 are reviewed in the light of the new data.</p>
  •  
3.
  • Aleksic, J., et al. (författare)
  • PG 1553+113 : FIVE YEARS OF OBSERVATIONS WITH MAGIC
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 748:1, s. 46
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We present the results of five years (2005-2009) of MAGIC observations of the BL Lac object PG 1553+113 at very high energies (VHEs; E &gt; 100 GeV). Power-law fits of the individual years are compatible with a steady mean photon index Gamma = 4.27 +/- 0.14. In the last three years of data, the flux level above 150 GeV shows a clear variability (probability of constant flux &lt; 0.001%). The flux variations are modest, lying in the range from 4% to 11% of the Crab Nebula flux. Simultaneous optical data also show only modest variability that seems to be correlated with VHE gamma-ray variability. We also performed a temporal analysis of (all available) simultaneous Fermi/Large Area Telescope data of PG 1553+113 above 1 GeV, which reveals hints of variability in the 2008-2009 sample. Finally, we present a combination of the mean spectrum measured at VHEs with archival data available for other wavelengths. The mean spectral energy distribution can be modeled with a one-zone synchrotron self-Compton model, which gives the main physical parameters governing the VHE emission in the blazar jet.</p>
  •  
4.
  • Hibar, D. P., et al. (författare)
  • Subcortical volumetric abnormalities in bipolar disorder
  • 2016
  • Ingår i: Molecular Psychiatry. - 1359-4184 .- 1476-5578. ; 21:12, s. 1710-1716
  • Tidskriftsartikel (refereegranskat)abstract
    • Considerable uncertainty exists about the defining brain changes associated with bipolar disorder (BD). Understanding and quantifying the sources of uncertainty can help generate novel clinical hypotheses about etiology and assist in the development of biomarkers for indexing disease progression and prognosis. Here we were interested in quantifying case-control differences in intracranial volume (ICV) and each of eight subcortical brain measures: nucleus accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, lateral ventricles. In a large study of 1710 BD patients and 2594 healthy controls, we found consistent volumetric reductions in BD patients for mean hippocampus (Cohen's d=-0.232; P=3.50 × 10 -7) and thalamus (d=-0.148; P=4.27 × 10 -3) and enlarged lateral ventricles (d=-0.260; P=3.93 × 10 -5) in patients. No significant effect of age at illness onset was detected. Stratifying patients based on clinical subtype (BD type I or type II) revealed that BDI patients had significantly larger lateral ventricles and smaller hippocampus and amygdala than controls. However, when comparing BDI and BDII patients directly, we did not detect any significant differences in brain volume. This likely represents similar etiology between BD subtype classifications. Exploratory analyses revealed significantly larger thalamic volumes in patients taking lithium compared with patients not taking lithium. We detected no significant differences between BDII patients and controls in the largest such comparison to date. Findings in this study should be interpreted with caution and with careful consideration of the limitations inherent to meta-analyzed neuroimaging comparisons. © 2016 Macmillan Publishers Limited, part of Springer Nature.
  •  
5.
  • Aleksic, J., et al. (författare)
  • DETECTION OF VERY HIGH ENERGY gamma-RAY EMISSION FROM THE PERSEUS CLUSTER HEAD-TAIL GALAXY IC 310 BY THE MAGIC TELESCOPES
  • 2010
  • Ingår i: The Astrophysical Journal Letters. - 2041-8205. ; 723:2, s. l207-L212
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We report on the detection with the MAGIC telescopes of very high energy (VHE) gamma-rays from IC 310, a head-tail radio galaxy in the Perseus galaxy cluster, observed during the interval 2008 November to 2010 February. The Fermi satellite has also detected this galaxy. The source is detected by MAGIC at a high statistical significance of 7.6 sigma in 20.6 hr of stereo data. The observed spectral energy distribution is flat with a differential spectral index of -2.00 +/- 0.14. The mean flux above 300 GeV, between 2009 October and 2010 February, (3.1 +/- 0.5) x 10(-12) cm(-2) s(-1), corresponds to (2.5 +/- 0.4)% of Crab Nebula units. Only an upper limit, of 1.9% of Crab Nebula units above 300 GeV, was obtained with the 2008 data. This, together with strong hints (&gt;3 sigma) of flares in the middle of 2009 October and November, implies that the emission is variable. The MAGIC results favor a scenario with the VHE emission originating from the inner jet close to the central engine. More complicated models than a simple one-zone synchrotron self-Compton (SSC) scenario, e. g., multi-zone SSC, external Compton, or hadronic, may be required to explain the very flat spectrum and its extension over more than three orders of magnitude in energy.</p>
  •  
6.
  • Aleksic, J., et al. (författare)
  • Discovery of VHE gamma-rays from the blazar 1ES 1215+303 with the MAGIC telescopes and simultaneous multi-wavelength observations
  • 2012
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 544, s. A142
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Context. We present the discovery of very high energy (VHE, E &gt; 100 GeV) gamma-ray emission from the BL Lac object 1ES 1215+303 by the MAGIC telescopes and simultaneous multi-wavelength data in a broad energy range from radio to gamma-rays. Aims. We study the VHE gamma-ray emission from 1ES 1215+303 and its relation to the emissions in other wavelengths. Methods. Triggered by an optical outburst, MAGIC observed the source in 2011 January-February for 20.3 h. The target was monitored in the optical R-band by the KVA telescope that also performed optical polarization measurements. We triggered target of opportunity observations with the Swift satellite and obtained simultaneous and quasi-simultaneous data from the Fermi Large Area Telescope and from the Metsahovi radio telescope. We also present the analysis of older MAGIC data taken in 2010. Results. The MAGIC observations of 1ES 1215+303 carried out in 2011 January-February resulted in the first detection of the source at VHE with a statistical significance of 9.4 sigma. Simultaneously, the source was observed in a high optical and X-ray state. In 2010 the source was observed in a lower state in optical, X-ray, and VHE, while the GeV gamma-ray flux and the radio flux were comparable in 2010 and 2011. The spectral energy distribution obtained with the 2011 data can be modeled with a simple one zone SSC model, but it requires extreme values for the Doppler factor or the electron energy distribution.</p>
  •  
7.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: Brain imaging and behavior. - 1931-7565. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way. © 2014 The Author(s).
  •  
8.
  • Thompson, Paul M., et al. (författare)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • Ingår i: BRAIN IMAGING BEHAV. - 1931-7557. ; 8:2, s. 153-182
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.</p>
  •  
9.
  • Clark, Andrew G., et al. (författare)
  • Evolution of genes and genomes on the Drosophila phylogeny.
  • 2007
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 450:7167, s. 203-218
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.</p>
  •  
10.
  • Andrews, Jennifer E., et al. (författare)
  • SN 2017gmr : An Energetic Type II-P Supernova with Asymmetries
  • 2019
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 885:1
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>We present high-cadence UV, optical, and near-infrared data on the luminous Type II-P supernova SN;2017gmr from hours after discovery through the first 180 days. SN;2017gmr does not show signs of narrow, high-ionization emission lines in the early optical spectra, yet the optical light-curve evolution suggests that an extra energy source from circumstellar medium (CSM) interaction must be present for at least 2 days after explosion. Modeling of the early light curve indicates a ?500 R progenitor radius, consistent with a rather compact red supergiant, and late-time luminosities indicate that up to 0.130;;0.026 M of Ni-56 are present, if the light curve is solely powered by radioactive decay, although the Ni-56 mass may be lower if CSM interaction contributes to the post-plateau luminosity. Prominent multipeaked emission lines of H? and [O i] emerge after day 154, as a result of either an asymmetric explosion or asymmetries in the CSM. The lack of narrow lines within the first 2 days of explosion in the likely presence of CSM interaction may be an example of close, dense, asymmetric CSM that is quickly enveloped by the spherical supernova ejecta.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 54
  • [1]23456Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy