SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lernmark Å.) "

Sökning: WFRF:(Lernmark Å.)

  • Resultat 1-10 av 47
  • [1]2345Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carlsson, A., et al. (författare)
  • Absence of Islet Autoantibodies and Modestly Raised Glucose Values at Diabetes Diagnosis Should Lead to Testing for MODY: Lessons From a 5-Year Pediatric Swedish National Cohort Study
  • 2020
  • Ingår i: Diabetes Care. - Arlington, VA, United States : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 43:1, s. 82-89
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE Identifying maturity-onset diabetes of the young (MODY) in pediatric populations close to diabetes diagnosis is difficult. Misdiagnosis and unnecessary insulin treatment are common. We aimed to identify the discriminatory clinical features at diabetes diagnosis of patients with glucokinase (GCK), hepatocyte nuclear factor-1A (HNF1A), and HNF4A MODY in the pediatric population. RESEARCH DESIGN AND METHODS Swedish patients (n = 3,933) aged 1–18 years, diagnosed with diabetes May 2005 to December 2010, were recruited from the national consecutive prospective cohort Better Diabetes Diagnosis. Clinical data, islet autoantibodies (GAD insulinoma antigen-2, zinc transporter 8, and insulin autoantibodies), HLA type, and C-peptide were collected at diagnosis. MODY was identified by sequencing GCK, HNF1A, and HNF4A, through either routine clinical or research testing. RESULTS The minimal prevalence of MODY was 1.2%. Discriminatory factors for MODY at diagnosis included four islet autoantibody negativity (100% vs. 11% not-known MODY; P = 2 × 10−44), HbA1c (7.0% vs. 10.7% [53 vs. 93 mmol/mol]; P = 1 × 10−20), plasma glucose (11.7 vs. 26.7 mmol/L; P = 3 × 10−19), parental diabetes (63% vs. 12%; P = 1 × 10−15), and diabetic ketoacidosis (0% vs. 15%; P = 0.001). Testing 303 autoantibody-negative patients identified 46 patients with MODY (detection rate 15%). Limiting testing to the 73 islet autoantibody-negative patients with HbA1c <7.5% (58 mmol/mol) at diagnosis identified 36 out of 46 (78%) patients with MODY (detection rate 49%). On follow-up, the 46 patients with MODY had excellent glycemic control, with an HbA1c of 6.4% (47 mmol/mol), with 42 out of 46 (91%) patients not on insulin treatment. CONCLUSIONS At diagnosis of pediatric diabetes, absence of all islet autoantibodies and modest hyperglycemia (HbA1c <7.5% [58 mmol/mol]) should result in testing for GCK, HNF1A, and HNF4A MODY. Testing all 12% patients negative for four islet autoantibodies is an effective strategy for not missing MODY but will result in a lower detection rate. Identifying MODY results in excellent long-term glycemic control without insulin.
  •  
2.
  • Resic-Lindehammer, Sabina, et al. (författare)
  • Temporal trends of HLA genotype frequencies of type 1 diabetes patients in Sweden from 1986 to 2005 suggest altered risk
  • 2008
  • Ingår i: Acta Diabetologica. - : Springer Milan. - 0940-5429 .- 1432-5233. ; 45:4, s. 231-5
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to compare the frequency of human leukocyte antigen (HLA) genotypes in 1-18-year-old patients with type 1 diabetes newly diagnosed in 1986-1987 (n = 430), 1996-2000 (n = 342) and in 2003-2005 (n = 171). We tested the hypothesis that the HLA DQ genotype distribution changes over time. Swedish type 1 diabetes patients and controls were typed for HLA using polymerase chain reaction amplification and allele specific probes for DQ A1* and B1* alleles. The most common type 1 diabetes HLA DQA1*-B1*genotype 0501-0201/0301-0302 was 36% (153/430) in 1986-1987 and 37% (127/342) in 1996-2000, but decreased to 19% (33/171) in 2003-2005 (P \ 0.0001). The 0501-0201/0501-0201 genotype increased from 1% in 1986-1987 to 7% in 1996-2000 (P = 0.0047) and to 5% in 2003-2005 (P > 0.05). This study in 1-18-year-old Swedish type 1 diabetes patients supports the notion that there is a temporal change in HLA risk.
  •  
3.
  • Zhao, Lue Ping, et al. (författare)
  • Nine residues in HLA-DQ molecules determine with susceptibility and resistance to type 1 diabetes among young children in Sweden
  • 2021
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • HLA-DQ molecules account over 50% genetic risk of type 1 diabetes (T1D), but little is known about associated residues. Through next generation targeted sequencing technology and deep learning of DQ residue sequences, the aim was to uncover critical residues and their motifs associated with T1D. Our analysis uncovered (αa1, α44, α157, α196) and (β9, β30, β57, β70, β135) on the HLA-DQ molecule. Their motifs captured all known susceptibility and resistant T1D associations. Three motifs, "DCAA-YSARD" (OR = 2.10, p = 1.96*10-20), "DQAA-YYARD" (OR = 3.34, 2.69*10-72) and "DQDA-YYARD" (OR = 3.71, 1.53*10-6) corresponding to DQ2.5 and DQ8.1 (the latter two motifs) associated with susceptibility. Ten motifs were significantly associated with resistance to T1D. Collectively, homozygous DQ risk motifs accounted for 43% of DQ-T1D risk, while homozygous DQ resistant motifs accounted for 25% protection to DQ-T1D risk. Of the identified nine residues five were within or near anchoring pockets of the antigenic peptide (α44, β9, β30, β57 and β70), one was the N-terminal of the alpha chain (αa1), one in the CD4-binding region (β135), one in the putative cognate TCR-induced αβ homodimerization process (α157), and one in the intra-membrane domain of the alpha chain (α196). Finding these critical residues should allow investigations of fundamental properties of host immunity that underlie tolerance to self and organ-specific autoimmunity.
  •  
4.
  • Andersson, C, et al. (författare)
  • Triple specificity of ZnT8 autoantibodies in relation to HLA and other islet autoantibodies in childhood and adolescent type 1 diabetes
  • 2013
  • Ingår i: Pediatric Diabetes. - : Wiley-Blackwell. - 1399-543X .- 1399-5448. ; 14:2, s. 97-105
  • Tidskriftsartikel (refereegranskat)abstract
    • Andersson C, Vaziri-Sani F, Delli AJ, Lindblad B, Carlsson A, Forsander G, Ludvigsson J, Marcus C, Samuelsson U, Ivarsson SA, Lernmark A, Elding Larsson H, the BDD Study group. Triple specificity of ZnT8 autoantibodies in relation to HLA and other islet autoantibodies in childhood and adolescent type 1 diabetes. Pediatric Diabetes 2013: 14: 97-105. Objective To establish the diagnostic sensitivity of and the relationships between autoantibodies to all three Zinc transporter 8 (Zinc transporter 8 autoantibody to either one, two, or all three amino acid variants at position 325, ZnT8A) variants to human leukocyte antigen (HLA)-DQ and to autoantibodies to glutamic acid decarboxylase (GADA), insulinoma-associated protein 2 (IA-2A), and insulin (IAA). Methods We analyzed 3165 patients with type 1 diabetes (T1D) in the Better Diabetes Diagnosis study for HLA-DQ genotypes and all six autoantibodies (ZnT8RA, arginine 325 Zinc transporter 8 autoantibody; ZnT8WA, tryptophan 325 Zinc transporter 8 autoantibody; ZnT8QA, glutamine 325 Zinc transporter 8 autoantibody; GADA, IA-2A, and IAA). Results ZnT8A was found in 65% of the patients and as many as 108 of 3165 (3.4%) had 13 ZnT8A alone. None had ZnT8QA alone. Together with GADA (56%), IA-2A (73%), and IAA (33%), 93% of the T1D patients were autoantibody positive. All three ZnT8A were less frequent in children below 2 yr of age (pandlt;0.0001). All three ZnT8A were associated with DQA1-B1*X-0604 (DQ6.4) and DQA1-B1*03-0302 (DQ8). ZnT8WA and ZnT8QA were negatively associated with DQA1-B1*05-02 (DQ2). Conclusions Analysis of ZnT8A increased the diagnostic sensitivity of islet autoantibodies for T1D as only 7% remained islet autoantibody negative. The association between DQ6.4 and all three ZnT8A may be related to ZnT8 antigen presentation by the DQ6.4 heterodimer.
  •  
5.
  • Gyllenberg, A, et al. (författare)
  • Age-dependent variation of genotypes in MHC II transactivator gene (CIITA) in controls and association to type 1 diabetes
  • 2012
  • Ingår i: Genes and Immunity. - Stockholm : Nature Publishing Group. - 1476-5470 .- 1466-4879. ; 13:8, s. 632-640
  • Tidskriftsartikel (refereegranskat)abstract
    • The major histocompatibility complex class II transactivator (CIITA) gene (16p13) has been reported to associate with susceptibility to multiple sclerosis, rheumatoid arthritis and myocardial infarction, recently also to celiac disease at genome-wide level. However, attempts to replicate association have been inconclusive. Previously, we have observed linkage to the CIITA region in Scandinavian type 1 diabetes (T1D) families. Here we analyze five Swedish T1D cohorts and a combined control material from previous studies of CIITA. We investigate how the genotype distribution within the CIITA gene varies depending on age, and the association to T1D. Unexpectedly, we find a significant difference in the genotype distribution for markers in CIITA (rs11074932, P=4 × 10(-5) and rs3087456, P=0.05) with respect to age, in the collected control material. This observation is replicated in an independent cohort material of about 2000 individuals (P=0.006, P=0.007). We also detect association to T1D for both markers, rs11074932 (P=0.004) and rs3087456 (P=0.001), after adjusting for age at sampling. The association remains independent of the adjacent T1D risk gene CLEC16A. Our results indicate an age-dependent variation in CIITA allele frequencies, a finding of relevance for the contrasting outcomes of previously published association studies.
  •  
6.
  • Nilsson, A-L, et al. (författare)
  • Serological Evaluation of Possible Exposure to Ljungan Virus and Related Parechovirus in Autoimmune (Type 1) Diabetes in Children
  • 2015
  • Ingår i: Journal of Medical Virology. - : John Wiley and Sons. - 0146-6615 .- 1096-9071. ; 87:7, s. 1130-1140
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure to Ljungan virus (LV) is implicated in the risk of autoimmune (type 1) diabetes but possible contribution by other parechoviruses is not ruled out. The aim was to compare children diagnosed with type 1 diabetes in 2005-2011 (n=69) with healthy controls (n=294), all from the Jamtland County in Sweden, using an exploratory suspension multiplex immunoassay for IgM and IgG against 26 peptides of LV, human parechoviruses (HPeV), Aichi virus and poliovirus in relation to a radiobinding assay (RBA) for antibodies against LV and InfluenzaA/H1N1pdm09. Islet autoantibodies and HLA-DQ genotypes were also determined. 1) All five LV-peptide antibodies correlated to each other (P<0.001) in the suspension multiplex IgM- and IgG-antibody assay; 2) The LV-VP1_31-60-IgG correlated with insulin autoantibodies alone (P=0.007) and in combination with HLA-DQ8 overall (P=0.022) as well as with HLA-DQ 8/8 and 8/X subjects (P=0.013); 3) RBA detected LV antibodies correlated with young age at diagnosis (P<0.001) and with insulin autoantibodies (P<0.001) especially in young HLA-DQ8 subjects (P=0.004); 4) LV-peptide-VP1_31-60-IgG correlated to RBA LV antibodies (P=0.009); 5) HPeV3-peptide-IgM and -IgG showed inter-peptide correlations (P<0.001) but only HPeV3-VP1_1-30-IgG (P<0.001) and VP1_95-124-IgG (P=0.009) were related to RBA LV antibodies without relation to insulin autoantibody positivity (P=0.072 and P=0.486, respectively). Both exploratory suspension multiplex IgG to LV-peptide VP1_31-60 and RBA detected LV antibodies correlated with insulin autoantibodies and HLA-DQ8 suggesting possible role in type 1 diabetes. It remains to be determined if cross-reactivity or concomitant exposure to LV and HPeV3 contributes to the seroprevalence. J. Med. Virol. 87:1130-1140, 2015.
  •  
7.
  • Persson, M., et al. (författare)
  • The Better Diabetes Diagnosis (BDD) study – A review of a nationwide prospective cohort study in Sweden
  • 2018
  • Ingår i: Diabetes Research and Clinical Practice. - : ELSEVIER IRELAND LTD. - 0168-8227 .- 1872-8227. ; 140, s. 236-244
  • Forskningsöversikt (refereegranskat)abstract
    • The incidence of type 1 diabetes (T1D) in Sweden is one of the highest in the world. However, the possibility of other types of diabetes must also be considered. In addition, individuals with T1D constitute a heterogeneous group. A precise classification of diabetes is a prerequisite for optimal outcome. For precise classification, knowledge on the distribution of genetic factors, biochemical markers and clinical features in individuals with new onset of diabetes is needed. The Better Diabetes Diagnosis (BDD), is a nationwide study in Sweden with the primary aim to facilitate a more precise classification and diagnosis of diabetes in order to enable the most adequate treatment for each patient. Secondary aims include identification of risk factors for diabetes-related co-morbidities. Since 2005, data on almost all children and adolescents with newly diagnosed diabetes in Sweden are prospectively collected and including heredity of diabetes, clinical symptoms, levels of C peptide, genetic analyses and detection of autoantibodies. Since 2011, analyses of HLA profile, autoantibodies and C peptide levels are part of clinical routine in Sweden for all pediatric patients with suspected diagnosis of diabetes. In this review, we present the methods and main results of the BDD study so far and discuss future aspects.
  •  
8.
  • Östman, Jan, et al. (författare)
  • Ketoacidosis in young adults is not related to the islet antibodies at the diagnosis of Type 1 diabetes mellitus - A nationwide study
  • 2000
  • Ingår i: Diabetic Medicine. - : Wiley-Blackwell. - 0742-3071 .- 1464-5491. ; 17:4, s. 269-274
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: To test the hypothesis that there is lower prevalence of islet antibodies in subjects with newly diagnosed Type 1 diabetes mellitus in young adulthood than in children is associated with less severe diabetes at time of diagnosis. Methods: This investigation was based on a nationwide study (Diabetes Incidence Study in Sweden) of 15-34-year-old newly diagnosed diabetic subjects. During 1992-1993, all diabetic subjects (excluding secondary and gestational diabetes) were reported on standardized forms, with information about clinical characteristics at diagnosis. The study examined islet cell antibodies (ICA) by indirect immunofluorescence, and autoantibodies to glutamic acid decarboxylase (GADA), tyrosine phosphatase- like antigen (IA-2A) and insulin (IAA) as well as C-peptide by radioimmunoassay. Results: Blood samples were available from 78 patients with diabetic ketoacidosis (DKA) and 517 non-acidotic patients. The prevalence of ICA (63% vs. 57%), GADA (63% vs. 66%), IA-2A (35% vs. 44%) and IAA (20% vs. 15%) were very similar in patients with or without DKA. The median levels of the four autoantibodies did not differ between the two groups. High blood glucose (P < 0.001) and low C-peptide levels (P < 0.001) were the only parameters found to be related to DKA. Conclusions: The similarities in findings of newly diagnosed diabetic patients with or without DKA regarding ICA, GADA, IA-2A and IAA suggest that there is no relationship between the expression of antigenicity and the severity of β-cell dysfunction. The lower prevalence of the four autoantibodies in 15-34-year-old diabetic subjects compared with previous findings in children is not explained by misclassification of diabetes type.
  •  
9.
  • Andersson, C, et al. (författare)
  • The three ZNT8 autoantibody variants together improve the diagnostic sensitivity of childhood and adolescent type 1 diabetes
  • 2011
  • Ingår i: Autoimmunity. - : Taylor & Francis. - 0891-6934 .- 1607-842X. ; 44:5, s. 394-405
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We tested whether autoantibodies to all three ZnT8RWQ variants, GAD65, insulinoma-associated protein 2 (IA-2), insulin and autoantibodies to islet cell cytoplasm (ICA) in combination with human leukocyte antigen (HLA) would improve the diagnostic sensitivity of childhood type 1 diabetes by detecting the children who otherwise would have been autoantibody-negative.Methods: A total of 686 patients diagnosed in 1996–2005 in Skåne were analyzed for all the seven autoantibodies [arginin 325 zinc transporter 8 autoantibody (ZnT8RA), tryptophan 325 zinc transporter 8 autoantibody (ZnT8WA), glutamine 325 Zinc transporter 8 autoantibody (ZnT8QA), autoantibodies to glutamic acid decarboxylase (GADA), Autoantibodies to islet-antigen-2 (IA-2A), insulin autoantibodies (IAA) and ICA] in addition to HLA-DQ genotypes.Results: Zinc transporter 8 autoantibody to either one or all three amino acid variants at position 325 (ZnT8RWQA) was found in 65% (449/686) of the patients. The frequency was independent of age at diagnosis. The ZnT8RWQA reduced the frequency of autoantibody-negative patients from 7.5 to 5.4%—a reduction by 28%. Only 2 of 108 (2%) patients who are below 5 years of age had no autoantibody at diagnosis. Diagnosis without any islet autoantibody increased with increasing age at onset. DQA1-B1*X-0604 was associated with both ZnT8RA (p = 0.002) and ZnT8WA (p = 0.01) but not with ZnT8QA (p = 0.07). Kappa agreement analysis showed moderate (>0.40) to fair (>0.20) agreement between pairs of autoantibodies for all combinations of GADA, IA-2A, ZnT8RWQA and ICA but only slight ( < 0.19) agreement for any combination with IAA.Conclusions: This study revealed that (1) the ZnT8RWQA was common, independent of age; (2) multiple autoantibodies were common among the young; (3) DQA1-B1*X-0604 increased the risk for ZnT8RA and ZnT8WA; (4) agreement between autoantibody pairs was common for all combinations except IAA. These results suggest that ZnT8RWQA is a necessary complement to the classification and prediction of childhood type 1 diabetes as well as to randomize the subjects in the prevention and intervention of clinical trials.
  •  
10.
  • Jonson, CO, et al. (författare)
  • The importance of CTLA-4 polymorphism and human leukocyte antigen genotype for the induction of diabetes-associated cytokine response in healthy school children.
  • 2007
  • Ingår i: Pediatr Diabetes. - 1399-543X .- 1399-5448. ; 8:4, s. 185-192
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 diabetes (T1D) is an autoimmune disease associated with the destruction of pancreatic β cells and genetically linked to human leukocyte antigen (HLA) class II DR3-DQ2 and DR4-DQ8 haplotypes. The +49A/G polymorphism of the immunoregulatory cytotoxic T-lymphocyte antigen 4 (CTLA-4) gene is also associated with T1D. Genetic and environmental risk factors precede the onset of T1D, which is characterized by a T helper 1 cell-dominating cytokine response to diabetes-related autoantigens. Aim: To investigate immunological differences between healthy children with and without CTLA-4 +49A/G and HLA genetic susceptibility for T1D. Study design: Young, 7-15 years of age, healthy subjects (n = 58) were investigated to test whether CTLA-4 +49A/G genotype was associated with enzyme-linked immunospot assay T-cell responses to T1D-related autoantigens. Because T1D is primarily HLA-DQ associated, we stratified the healthy subjects by HLA genotypes associated with the disease. Results: Peptide of heat shock protein 60 induced a higher interferon-γ (IFN-γ) response in subjects with risk-associated CTLA-4 polymorphism (GG genotype) (p = 0.02) while glutamic acid decarboxylase 65-induced interleukin-4 (IL-4) secretion was lower in GG genotype subjects (p = 0.02). Conclusion: The increased IFN-γ response and lower IL-4 response toward diabetes-related autoantigens shown in CTLA-4 +49 GG risk subjects show a possible mechanism for the association between CTLA-4 and T1D.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 47
  • [1]2345Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy