SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Bingshan) ;pers:(Lu Yingchang)"

Sökning: WFRF:(Li Bingshan) > Lu Yingchang

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lu, Yingchang, et al. (författare)
  • Identification of Novel Loci and New Risk Variant in Known Loci for Colorectal Cancer Risk in East Asians
  • 2020
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 29:2, s. 477-486
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Risk variants identified so far for colorectal cancer explain only a small proportion of milial risk of this cancer, particularly in Asians.Methods: We performed a genome-wide association study (GWAS) of colorectal cancer in East Asians, cluding 23,572 colorectal cancer cases and 48,700 controls. To identify novel risk loci, we selected 60 omising risk variants for replication using data from 58,131 colorectal cancer cases and 67,347 controls European descent. To identify additional risk variants in known colorectal cancer loci, we performed nditional analyses in East Asians.Results: An indel variant, rs67052019 at 1p13.3, was found to be associated with colorectal cancer risk P = 3.9 x 10(-8) in Asians (OR per allele deletion = 1.13, 95% confidence interval = 1.08-1.18). This sociation was replicated in European descendants using a variant (rs2938616) in complete linkage sequilibrium with rs67052019 (P = 7.7 x 10(-3)). Of the remaining 59 variants, 12 showed an association P < 0.05 in the European-ancestry study, including rs11108175 and rs9634162 at P < 5 x 10(-8) and o variants with an association near the genome-wide significance level (rs60911071, P = 5.8 x 10(-8); 62558833, P = 7.5 x 10(-8)) in the combined analyses of Asian- and European-ancestry data. In addition, ing data from East Asians, we identified 13 new risk variants at 11 loci reported from previous GWAS.Conclusions: In this large GWAS, we identified three novel risk loci and two highly suggestive loci for lorectal cancer risk and provided evidence for potential roles of multiple genes and pathways in the iology of colorectal cancer. In addition, we showed that additional risk variants exist in many colorectal ncer risk loci identified previously.Impact: Our study provides novel data to improve the understanding of the genetic basis for colorectal ncer risk.
  •  
2.
  •  
3.
  • Yang, Yaohua, et al. (författare)
  • Genetic Data from Nearly 63,000 Women of European Descent Predicts DNA Methylation Biomarkers and Epithelial Ovarian Cancer Risk
  • 2019
  • Ingår i: Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 0008-5472 .- 1538-7445. ; 79:3, s. 505-517
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA methylation is instrumental for gene regulation. Global changes in the epigenetic landscape have been recognized as a hallmark of cancer. However, the role of DNA methylation in epithelial ovarian cancer (EOC) remains unclear. In this study, high-density genetic and DNA methylation data in white blood cells from the Framingham Heart Study (N = 1,595) were used to build genetic models to predict DNA methylation levels. These prediction models were then applied to the summary statistics of a genome-wide association study (GWAS) of ovarian cancer including 22,406 EOC cases and 40,941 controls to investigate genetically predicted DNA methylation levels in association with EOC risk. Among 62,938 CpG sites investigated, genetically predicted methylation levels at 89 CpG were significantly associated with EOC risk at a Bonferroni-corrected threshold of P < 7.94 x 10(-7). Of them, 87 were located at GWAS-identified EOC susceptibility regions and two resided in a genomic region not previously reported to be associated with EOC risk. Integrative analyses of genetic, methylation, and gene expression data identified consistent directions of associations across 12 CpG, five genes, and EOC risk, suggesting that methylation at these 12 CpG may influence EOC risk by regulating expression of these five genes, namely MAPT, HOXB3, ABHD8, ARHGAP27, and SKAP1. We identified novel DNA methylation markers associated with EOC risk and propose that methylation at multiple CpG may affect EOC risk via regulation of gene expression. Significance: Identification of novel DNA methylation markers associated with EOC risk suggests that methylation at multiple CpG may affect EOC risk through regulation of gene expression.
  •  
4.
  • Lu, Yingchang, et al. (författare)
  • A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk.
  • 2018
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 78:18, s. 5419-5430
  • Tidskriftsartikel (refereegranskat)abstract
    • .AbstractLarge-scale genome-wide association studies (GWAS) have identified approximately 35 loci associated with epithelial ovarian cancer (EOC) risk. The majority of GWAS-identified disease susceptibility variants are located in noncoding regions, and causal genes underlying these associations remain largely unknown. Here, we performed a transcriptome-wide association study to search for novel genetic loci and plausible causal genes at known GWAS loci. We used RNA sequencing data (68 normal ovarian tissue samples from 68 individuals and 6,124 cross-tissue samples from 369 individuals) and high-density genotyping data from European descendants of the Genotype-Tissue Expression (GTEx V6) project to build ovarian and cross-tissue models of genetically regulated expression using elastic net methods. We evaluated 17,121 genes for their cis-predicted gene expression in relation to EOC risk using summary statistics data from GWAS of 97,898 women, including 29,396 EOC cases. With a Bonferroni-corrected significance level of P < 2.2 × 10−6, we identified 35 genes, including FZD4 at 11q14.2 (Z = 5.08, P = 3.83 × 10−7, the cross-tissue model; 1 Mb away from any GWAS-identified EOC risk variant), a potential novel locus for EOC risk. All other 34 significantly associated genes were located within 1 Mb of known GWAS-identified loci, including 23 genes at 6 loci not previously linked to EOC risk. Upon conditioning on nearby known EOC GWAS-identified variants, the associations for 31 genes disappeared and three genes remained (P < 1.47 × 10−3). These data identify one novel locus (FZD4) and 34 genes at 13 known EOC risk loci associated with EOC risk, providing new insights into EOC carcinogenesis.Significance: Transcriptomic analysis of a large cohort confirms earlier GWAS loci and reveals FZD4 as a novel locus associated with EOC risk. Cancer Res; 78(18); 5419–30. ©2018 AACR.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy