SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li L) srt2:(2015-2019);lar1:(ri)"

Sökning: WFRF:(Li L) > (2015-2019) > RISE

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mo, Lixin, et al. (författare)
  • On the temperature dependency and reversibility of sheet resistance of silver nanoparticles covered by 3-mercaptopropionic acid
  • 2017
  • Ingår i: Journal of materials science. Materials in electronics. - : Springer Science and Business Media LLC. - 0957-4522 .- 1573-482X. ; 28:5, s. 4035-4043
  • Tidskriftsartikel (refereegranskat)abstract
    • The temperature dependency and reversibility of the sheet resistance of silver nanoparticles covered by 3-mercaptopropionic acid (Ag-MPA) molecules, used in the printed temperature sensor, has been investigated. The microstructural evaluation, the FTIR spectra and thermal property analyses of the Ag-MPA films suggest co-existence of both weakly adsorbed as well as firmly adsorbed MPA molecules on the surface of Ag nanoparticles. The weakly adsorbed MPA molecules was to a great extent be desorbed and removed from the surfaces of silver nanoparticles when heated up to 180 °C for the first time. While the firmly adsorbed MPA molecules remain on the surfaces of silver nanoparticles even at higher temperature. Yet the firmly adsorbed MPA molecules are likely having gone through a transformation circle from/to the gauche and trans conformations in correspondence to a heating and cooling cycle, which results in temperature dependent and reversible sheet resistance. The MPA molecules in the gauche conformation are more densely packed on the surface of silver nanoparticles and can hinder the electron’s movability within the Ag-MPA film. While in the trans conformation with lower ‘surface space’ coverage by the MPA molecules, electrons move more freely within the film. Based on the temperature dependent nature, the fully printed temperature sensor using the Ag-MPA nanoparticles as the functional layer was made, of which the highest sensitivity is 5.12% °C−1 at 200 °C.
  •  
2.
  • Niimi, Jun, et al. (författare)
  • Wine consumers' subjective responses to wine mouthfeel and understanding of wine body
  • 2017
  • Ingår i: Food Research International. - : Elsevier Ltd. - 0963-9969 .- 1873-7145. ; 99, s. 115-122
  • Tidskriftsartikel (refereegranskat)abstract
    • Wine mouthfeel is considered important for wine quality by experts, while consumers understanding of mouthfeel and the role of wine body in their wine choice is unknown. One experiment determined the influence of intrinsic wine mouthfeel on consumers' wine liking and emotions, and the other, how consumers understand the term wine body. The first experiment used a 2 astringency level × 2 body level experimental design. The samples were base wine with; nothing added (control), added xanthan gum (for increased body), added grape seed extract (GSE, for increased astringency), and with both added xanthan gum and GSE. The consumer taste trial (n = 112) indicated that wine with increased body did not influence wine liking and emotions; while increased astringency decreased liking and elicited more intense negative emotions. The second experiment examined consumers' knowledge of wine body through an online survey (n = 136). Consumers described wine body most frequently using words such as flavour, fullness, and strength. Wine body was therefore understood by consumers predominantly as a holistic multi-sensory perception of flavour. Wine flavour was indicated by consumers to be the most important factor driving purchase decisions followed by balance of flavours and wine body. It is crucial that wine professionals carefully communicate wine characteristics to consumers to prevent possible misunderstandings such as the meaning of wine body and as a result better meet consumer expectations. In future, the term body may benefit from a clearer definition for academic research as well as industry.  
  •  
3.
  • Buker, O., et al. (författare)
  • Metrological support for LNG custody transfer and transport
  • 2016
  • Ingår i: Proceedings of the 17th International Flow Measurement Conference (FLOMEKO 2016).
  • Konferensbidrag (refereegranskat)abstract
    • In the framework of the ongoing EMRP Joint Research Project (JRP) ENG 60 “Metrology for LNG” (2014-2017), co-funded by the European Union, a number of metrological challenges associated with custody transfer and transport of LNG will be faced. The project consists of four technical work packages (WP), whereby the main objective is to reduce the measurement uncertainty of LNG custody transfer by a factor two. The focus in WP1 is the design and development of a traceable mid-scale calibration standard for LNG mass and volume flow. The goal is to provide traceable mass and volume flow calibrations up to 400 m3/h (180000 kg/h). In WP2, the emphasis is on the development and validation of a LNG sampling and composition measurement reference standard, consisting of sampler, vaporizer, gas standards, and gas chromatography (GC), which will be used to  test and calibrate commercially available LNG sampling and composition measurement systems. The priority in WP3 is given to the development and validation of a method for the determination of the methane number, including correlations based on the LNG composition and corrections for traces of nitrogen and higher hydrocarbons. Since physical properties and quantities play an important role in LNG custody transfer, WP4 comprises reference quality density measurements of LNG to validate and improve models for LNG density predictions, the uncertainty evaluation of enthalpy and calorific value calculations and the development of a novel cryogenic sensor for the simultaneous measurement of speed-of-sound and density. The present paper gives an overview of recently achieved objectives within the project and provides an outlook to future activities.
  •  
4.
  • Goesmann, Fred, et al. (författare)
  • The Mars Organic Molecule Analyzer (MOMA) Instrument : Characterization of Organic Material in Martian Sediments
  • 2017
  • Ingår i: Astrobiology. - : Mary Ann Liebert Inc.. - 1531-1074 .- 1557-8070. ; 17:6-7, s. 655-685
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mars Organic Molecule Analyzer (MOMA) instrument onboard the ESA/Roscosmos ExoMars rover (to launch in July, 2020) will analyze volatile and refractory organic compounds in martian surface and subsurface sediments. In this study, we describe the design, current status of development, and analytical capabilities of the instrument. Data acquired on preliminary MOMA flight-like hardware and experimental setups are also presented, illustrating their contribution to the overall science return of the mission..
  •  
5.
  • Larzelere, W, et al. (författare)
  • MEASUREMENT OF THE INTERNAL INDUCTANCE OF IMPULSEVOLTAGE GENERATORS AND THE LIMITS OF LI FRONT TIMES
  • 2017
  • Konferensbidrag (refereegranskat)abstract
    • The recent push to higher testing voltages for research and production tests onUHV system components rated above 800kV class has led to difficulties in achieving thestandard waveshapes as required by IEC60060 Parts 1 and 2 and other existing IEC,IEEE/ANSI and other standards. One of the limiting components in achieving themaximum capacitive loading on an impulse generator for standard lightning impulse fronttimes is the inductance of the circuit. The total inductance of the circuit is comprised ofthe internal inductance of the impulse generator and the inductance of the loop toconnect to the load. The higher the voltage class of test objects, the larger the loop,yielding more inductance that in turn, reduces the test capacitance that can be connectedand still remain inside the overshoot requirements of the standards. The internalinductance of the impulse generator is comprised of the wiring of the stages and thestage capacitor inductance and/or the inductance of the waveshaping resistors. Thispaper shows the results of methods to measure and calculate the internal inductance ofseveral impulse generators and we review the formulas for calculating the maximum loadof an impulse generator with a given internal inductance. We believe these methods givemore realistic values than adding up nameplate inductance values from an impulsegenerator. The paper also reviews the pros and cons of higher stage capacitances inimpulse generators to test larger loads that are ultimately limited by the circuit inductancevalue. The intent of this paper is to assist in the revision of future IEC and IEEE standardsfor impulse testing apparatus in the UHV range
  •  
6.
  • Lobov, Gleb, et al. (författare)
  • Dynamic manipulation of optical anisotropy of suspended Poly-3-hexylthiophene nanofibers
  • 2016
  • Ingår i: Advanced Optical Materials. - : Wiley. - 2162-7568 .- 2195-1071. ; 4:10, s. 1651-1656
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly-3-hexylthiophene (P3HT) nanofibers are 1D crystalline semiconducting nanostructures, which are known for their application in photovoltaics. Due to the internal arrangement, P3HT nanofibers possess optical anisotropy, which can be enhanced on a macroscale if nanofibers are aligned. Alternating electric field, applied to a solution with dispersed nanofibers, causes their alignment and serves as a method to produce solid layers with ordered nanofibers. The transmission ellipsometry measurements demonstrate the dichroic absorption and birefringence of ordered nanofibers in a wide spectral range of 400–1700 nm. Moreover, the length of nanofibers has a crucial impact on their degree of alignment. Using electric birefringence technique, it is shown that external electric field applied to the solution with P3HT nanofibers can cause direct birefringence modulation. Dynamic alignment of dispersed nanofibers changes the refractive index of the solution and, therefore, the polarization of transmitted light. A reversible reorientation of nanofibers is organized by using a quadrupole configuration of poling electrodes. With further development, the described method can be used in the area of active optical fiber components, lab-on-chip or sensors. It also reveals the potential of 1D conducting polymeric structures as objects whose highly anisotropic properties can be implemented in electro-optical applications.​.
  •  
7.
  • Schlee, Philipp, et al. (författare)
  • Free-standing supercapacitors from kraft lignin nanofibers with remarkable volumetric energy density
  • 2019
  • Ingår i: Chemical Science. - : Royal Society of Chemistry. - 2041-6539. ; 10:10, s. 2980-2988
  • Tidskriftsartikel (refereegranskat)abstract
    • We have discovered a very simple method to address the challenge associated with the low volumetric energy density of free-standing carbon nanofiber electrodes for supercapacitors by electrospinning Kraft lignin in the presence of an oxidizing salt (NaNO3) and subsequent carbonization in a reducing atmosphere. The presence of the oxidative salt decreases the diameter of the resulting carbon nanofibers doubling their packing density from 0.51 to 1.03 mg cm−2 and hence doubling the volumetric energy density. At the same time, the oxidative NaNO3 salt eletrospun and carbonized together with lignin dissolved in NaOH acts as a template to increase the microporosity, thus contributing to a good gravimetric energy density. By simply adjusting the process parameters (amount of oxidizing/reducing agent), the gravimetric and volumetric energy density of the resulting lignin free-standing carbon nanofiber electrodes can be carefully tailored to fit specific power to energy demands. The areal capacitance increased from 147 mF cm−2 in the absence of NaNO3 to 350 mF cm−2 with NaNO3 translating into a volumetric energy density increase from 949 μW h cm−3 without NaNO3 to 2245 μW h cm−3 with NaNO3. Meanwhile, the gravimetric capacitance also increased from 151 F g−1 without to 192 F g−1 with NaNO3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy