SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Tao) ;lar1:(ri)"

Sökning: WFRF:(Li Tao) > RISE

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Tao, et al. (författare)
  • High-temperature pyrolysis modeling of a thermally thick biomass particle based on an MD-derived tar cracking model
  • 2021
  • Ingår i: Chemical Engineering Journal. - : Elsevier B.V.. - 1385-8947 .- 1873-3212. ; 417
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass pyrolysis in the thermally thick regime is an important thermochemical phenomenon encountered in many different types of reactors. In this paper, a particle-resolved algorithm for thermally thick biomass particle during high-temperature pyrolysis is established by using reactive molecular dynamics (MD) and computational fluid dynamics (CFD) methods. The temperature gradient inside the particle is computed with a heat transfer equation, and a multiphase flow algorithm is used to simulate the advection/diffusion both inside and outside the particle. Besides, to simulate the influence of intraparticle temperature gradient on the primary pyrolysis yields, a multistep kinetic scheme is used. Moreover, a new tar decomposition model is developed by reactive molecular dynamic simulations where every primary tar species in the multistep kinetic scheme cracks under high temperature. The integrated pyrolysis model is evaluated against a pyrolysis experiment of a centimeter-sized beech wood particle at 800–1050 °C. The simulation results show a remarkable improvement in both light gas and tar yields compared with a simplified tar cracking model. Meanwhile, the MD tar cracking model also gives a more reasonable prediction of the species yield history, which avoids the appearance of unrealistically high peak values at the initial stage of pyrolysis. Based on the new results, the different roles of secondary tar cracking inside and outside the particle are studied. Finally, the model is also used to assess the influence of tar residence time and several other factors impacting the pyrolysis.
  •  
2.
  • Chen, XÍ, et al. (författare)
  • TDHQ Enabling Fine-granularity Adaptive Loading for SSB-DMT Systems
  • 2018
  • Ingår i: IEEE Photonics Technology Letters. - : Institute of Electrical and Electronics Engineers Inc.. - 1041-1135 .- 1941-0174. ; 30:19, s. 1687-1690
  • Tidskriftsartikel (refereegranskat)abstract
    • In this letter, we introduce time domain hybrid quadrature amplitude modulation (TDHQ) for the single sideband (SSB) discrete multi-tone (DMT) systems. Experimental results reveal that with a single precoding set and the proposed adaptive loading algorithm, the TDHQ scheme can achieve finer granularity and therefore smoother continuous growth of data rate than that with the conventional quadrature amplitude modulation (QAM). Besides, thanks to the frame construction and the tailored mapping rule, the scheme with TDHQ has an obviously better peak to average power ratio (PAPR).
  •  
3.
  • Tao, Chen, 1989, et al. (författare)
  • A reactor-scale CFD model of soot formation during high-temperature pyrolysis and gasification of biomass
  • 2021
  • Ingår i: Fuel. - : Elsevier Ltd. - 0016-2361 .- 1873-7153. ; 303
  • Tidskriftsartikel (refereegranskat)abstract
    • Soot generation is an important problem in high-temperature biomass gasification, which results in both air pollution and the contamination of gasification equipment. Due to the complex nature of biomass materials and the soot formation process, it is still a challenge to fully understand and describe the mechanisms of tar evolution and soot generation at the reactor scale. This knowledge gap thus motivates the development of a comprehensive computational fluid dynamics (CFD) soot formation algorithm for biomass gasification, where the soot precursor is modeled using a component-based pyrolysis framework to distinguish cellulose, hemicellulose and lignin. The model is first validated with pyrolysis experiments from different research groups, after which the soot generation during biomass steam gasification in a drop-tube furnace is studied under different operating temperatures (900–1200 °C) and steam/biomass ratios. Compared with the predictions based on a detailed tar conversion model, the current algorithm captures the soot generation more reasonably although a simplified tar model is used. Besides, the influence of biomass lignin content and the impact of tar and soot consumptions on the soot yield is quantitatively studied. Moreover, the impact of surface growth on soot formation is also discussed. The current work demonstrates the feasibility of the coupled multiphase flow algorithm in the prediction of soot formation during biomass gasification with strong heat/mass transfer effects. In conclusion, the model is thus a useful tool for the analysis and optimization of industrial-scaled biomass gasification. © 2021 The Author(s)
  •  
4.
  • Zhao, Z., et al. (författare)
  • CFD simulation of soot generation during biomass gasification in a cyclone gasifier
  • 2024
  • Ingår i: Fuel. - : Elsevier Ltd. - 0016-2361 .- 1873-7153. ; 364
  • Tidskriftsartikel (refereegranskat)abstract
    • Soot generation is a challenging issue in high-temperature biomass gasification, which reduces the biomass conversion rate and leads to contamination of the reactor. To provide new means and insights to optimize gasification processes, the soot generation during biomass gasification in a cyclone reactor is studied here by establishing a novel biomass gasification and soot formation model to improve the accuracy attainable in numerical predictions of spatio-temporal soot evolution. The new method is validated by comparing it with gasification experiments in two reactor configurations. A good performance in capturing the overall soot generation and light gas yield of the current model is obtained in the simulations of an entrained flow reactor compared with experimental data. Besides, the biomass gasification behavior in this entrained flow reactor is systematically studied by reviewing the tar, precursor, and soot mass fraction evolution in the reactor under different steam/carbon ratios, gasification temperatures, and air excess ratios with the new model. Furthermore, the influence of varying air equivalence ratios, the operation temperature and the fuel moisture on the soot generation in a cyclone gasifier, as well as the ability of the proposed model to reflect such influences, are also discussed. Numerical simulations demonstrate the existence of an optimal operation condition for the cyclone gasifier in terms of the soot generation. The current work thus provides a useful tool for analyzing the mechanism of soot formation at the reactor scale. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy