SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Li Yi) ;hsvcat:4"

Sökning: WFRF:(Li Yi) > Lantbruksvetenskap

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arapovic, Lidija, et al. (författare)
  • Age Rather Than Supplementation with Oat β-Glucan Influences Development of the Intestinal Microbiota and SCFA Concentrations in Suckling Piglets
  • 2023
  • Ingår i: Animals. - 2076-2615. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of early supplementation with oat β-glucan during the suckling period on piglet gut microbiota composition, concentrations of short-chain fatty acids, and gut physiological markers were assessed. Fifty piglets from five litters, balanced for sex and birth weight, were divided within litters into two treatment groups: β-glucan and control. Piglets in the β-glucan group received the supplement three times/week from day 7 of age until weaning. Rectal swab samples were collected from 10 piglets per treatment group (balanced across litters) from week 1 to week 4, and plasma samples were collected at 1, 3, and 4 weeks of age. Additional samples of intestinal tissues and jugular and portal vein plasma were collected from 10 animals at weaning (one per treatment group and litter). The concentrations of short-chain fatty acids in plasma and the microbiota composition in rectal swabs were mainly influenced by piglet age, rather than the supplement. There were significant differences in microbiota composition between litters and several correlations between concentrations of short-chain fatty acids in plasma and specific microbial taxa in rectal swabs. Overall, β-glucan supplementation did not have any clear impact on the gut environment in suckling piglets, whereas a clear age-related pattern emerged.
  •  
2.
  • Cai, Guan, et al. (författare)
  • Root exudates with low C/N ratios accelerate CO2 emissions from paddy soil
  • 2022
  • Ingår i: Land Degradation and Development. - : Wiley. - 1099-145X .- 1085-3278. ; 33:8, s. 1193-1203
  • Tidskriftsartikel (refereegranskat)abstract
    • Root exudates can significantly modify microbial activity and soil organic matter (SOM) mineralization. However, how root exudates and their C/N stoichiometric ratios control paddy soil C mineralization is poorly understood. This study used a mixture of glucose, oxalic acid, and alanine as root exudate mimics for three C/N stoichiometric ratios (CN6, CN10, and CN80) to explore the underlying mechanisms involved in SOM mineralization. The input of root exudates enhanced CO2 emissions by 1.8–2.3-fold that of soil with only C additions (C-only). Artificial root exudates with low C/N ratios (CN6 and CN10) increased the metabolic quotient (qCO2) by 12% over those with higher stoichiometric ratios (CN80 and C-only), suggesting a relatively high energy demand for microorganisms to acquire organic N from SOM by increasing N-hydrolase production. The increase of stoichiometric ratios of C- to N-hydrolase (β-1,4-glucosidase to β-1,4-N-acetyl glucosaminidase) promoted SOM degradation compared to those involved in organic C- and N- degradation, which had a significant positive correlation with qCO2. The stoichiometric ratios of microbial biomass (MBC/MBN) were positively correlated with C use efficiency, indicating root exudates with higher C/N ratios provide an undersupply of N for microorganisms that trigger the release of N-degrading extracellular enzymes. Our findings showed that the C/N stoichiometry of root exudates controlled SOM mineralization by affecting the specific response of the microbial biomass through the activity of C- and N-releasing extracellular enzymes to adjust the microbial C/N ratio.
  •  
3.
  • Jiang, Yonglei, et al. (författare)
  • Rotation cropping and organic fertilizer jointly promote soil health and crop production
  • 2022
  • Ingår i: Journal of Environmental Management. - : Elsevier BV. - 0301-4797. ; 315
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying field management practices to promote crop production, while conserving soil health is essential to maintain long-term food production in a changing world. Also, providing experimental evidence to support the use of traditional agricultural practices is necessary to secure sustainable agriculture. Here, we conducted a long-term 12-year experiment to investigate the impact of different combinations of fertilization type (control, inorganic fertilizer, organic fertilizer) and cropping regimes (continuous cropping and rotation cropping) on the crop (tobacco) production and multiple soil attributes associated with soil health, including proportions of soil-borne pathogens and decomposers, soil microbial diversity, microbial network stability and biomass, nutrient pools and microbial resource limitations. Our long-term experiment supports that the combination of organic fertilizer with rotation cropping increased crop production by at least 40% compared to the other management combinations and improved soil nutrient pools (e.g. the content of soil organic matter), improved the relative proportion of soil decomposers, and promoted bacterial and fungal network stability and biodiversity. Furthermore, this combination treatment relieved microbial resource limitation and reduced the abundance of potential fungal plant pathogens by at least 20% compared to other management combinations. In summary, we provide experimental evidence to support that the combined use of organic fertilization and rotation cropping management can help maintain long-term soil health, crop production, and economic outputs.
  •  
4.
  • Li, Jing, et al. (författare)
  • Structural compositions and biological activities of cell wall polysaccharides in the rhizome, stem, and leaf of Polygonatum odoratum (Mill.) Druce
  • 2022
  • Ingår i: Carbohydrate Research. - : Elsevier BV. - 0008-6215 .- 1873-426X. ; 521
  • Tidskriftsartikel (refereegranskat)abstract
    • Polygonatum odoratum is a perennial rhizomatous medicinal plant and different plant parts have been used in the treatment of various ailments. Herein, we have investigated the structural compositions of rhizome, leaf, and stem cell walls. We found 30–44% of polysaccharides in these wall preparations were cyclohexanediaminetetraacetic acid (CDTA) extractable, the proportion of heteromannans (HMs) in the rhizome is nearly three-fold compared to that of the leave and stem. The pectic polysaccharides of the rhizome are also structurally more diverse, with arabinans and type I and type II arabinogalactans being richest as shown by linkage study of the sodium carbonate (Na2CO3) extract. In addition, the 2-linked Araf was rhizome-specific, suggesting the cell walls in the rhizome had adapted to a more complex structure compared to that of the leaf and stem. Water-soluble polysaccharide fractions were also investigated, high proportion of Man as in 4-linked Manp indicated high proportion of HMs. The 21.4 kDa pectic polysaccharides and HMs derived from rhizome cell walls induced specific immune response in mice macrophage cells producing IL-1α and hematopoietic growth factors GM-CSF and G-CSF in vitro.
  •  
5.
  • Qiao, Xinyu, et al. (författare)
  • Effects of ethanol pretreatment on osteogenic activity and off-flavors in blue mussel (Mytilus edulis L.) enzymatic hydrolysates
  • 2023
  • Ingår i: Food Research International. - : Elsevier. - 0963-9969 .- 1873-7145. ; 167
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquatic protein hydrolysates have many biological activities, but the off-flavor seriously decreases their commercial acceptability. Therefore, it is important to invest in finding an effective deodorization of aquatic hydrolysates that do not affect activities. In this study, ethanol pretreatment of mussel was applied to establish a new method to deodorize the blue mussel (Mytilus edulis L.) hydrolysates. LC-MS and GC–MS analysis results showed that 87.34% of fatty acids, 83.94% of aldehydes, most volatile flavor compounds including aldehydes, ketones, alcohols, acids, and hydrocarbons were decreased after ethanol pretreatment. Besides, it was found that the enzymatic hydrolysates of mussel with or without ethanol pretreatment showed high osteogenic activity, which induced an increase of 33.65 ± 4.36% and 31.77 ± 5.45% in MC3T3-E1 cell growth. These results suggest that ethanol pretreatment has beneficial potential for improving the flavor aspects of blue mussel peptides which may have the potential to stimulate bone regeneration and formation.
  •  
6.
  • Tao, Yi, et al. (författare)
  • Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants
  • 2008
  • Ingår i: Cell. - : Elsevier. - 0092-8674 .- 1097-4172. ; 133:1, s. 164-176
  • Tidskriftsartikel (refereegranskat)abstract
    • Plants grown at high densities perceive a decrease in the red to far-red (R:FR) ratio of incoming light, resulting from absorption of red light by canopy leaves and reflection of far-red light from neighboring plants. These changes in light quality trigger a series of responses known collectively as the shade avoidance syndrome. During shade avoidance, stems elongate at the expense of leaf and storage organ expansion, branching is inhibited, and flowering is accelerated. We identified several loci in Arabidopsis, mutations in which lead to plants defective in multiple shade avoidance responses. Here we describe TAA1, an aminotransferase, and show that TAA1 catalyzes the formation of indole-3-pyruvic acid (IPA) from L-tryptophan (L-Trp), the first step in a previously proposed, but uncharacterized, auxin biosynthetic pathway. This pathway is rapidly deployed to synthesize auxin at the high levels required to initiate the multiple changes in body plan associated with shade avoidance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy