SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindahl Anders 1954 ) ;pers:(Bigdeli Narmin 1974)"

Sökning: WFRF:(Lindahl Anders 1954 ) > Bigdeli Narmin 1974

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bigdeli, Narmin, 1974, et al. (författare)
  • Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces.
  • 2008
  • Ingår i: Journal of biotechnology. - : Elsevier BV. - 0168-1656. ; 133:1, s. 146-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies have shown that cultivation of undifferentiated human embryonic stem (hES) cells requires human fibroblasts (hF) or mouse embryonic fibroblast (mEF) feeders or a coating matrix such as laminin, fibronectin or Matrigeltrade mark in combination with mEF or hF conditioned medium. We here demonstrate a successful feeder-free and matrix-free culture system in which undifferentiated hES cells can be cultured directly on plastic surfaces without any supportive coating, in a hF conditioned medium. The hES cells cultured directly on plastic surfaces grow as colonies with morphology very similar to cells cultured on Matrigel(TM). Two hES cell lines SA167 and AS034.1 were adapted to matrix-free growth (MFG) and have so far been cultured up to 43 passages and cryopreserved successfully. The lines maintained a normal karyotype and expressed the expected marker profile of undifferentiated hES cells for Oct-4, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81 and SSEA-1. The hES cells formed teratomas in SCID mice and differentiated in vitro into derivates of all three germ layers. Thus, the MFG-adapted hES cells appear to retain pluripotency and to remain undifferentiated. The present culture system has a clear potential to be scaleable up to a manufacturing level and become the preferred culture system for various applications such as cell therapy and toxicity testing.
  •  
2.
  • Bigdeli, Narmin, 1974, et al. (författare)
  • Coculture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation.
  • 2009
  • Ingår i: Stem cells (Dayton, Ohio). - : Oxford University Press (OUP). - 1549-4918 .- 1066-5099. ; 27:8, s. 1812-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Human embryonic stem (hES) cells have been suggested as a cell source for the repair of cartilage lesions. Here we studied how coculture with human articular chondrocytes affects the expansion potential, morphology, expression of surface markers, and differentiation abilities of hES cells, with special regard to chondrogenic differentiation. Undifferentiated hES cells were cocultured with irradiated neonatal or adult articular chondrocytes in high-density pellet mass cultures for 14 days. Cocultured hES cells were then expanded on plastic and their differentiation potential toward the adipogenic, osteogenic, and chondrogenic lineages was compared with that of undifferentiated hES cells. The expression of different surface markers was investigated using flow cytometry and teratoma formation was studied using injection of the cells under the kidney capsule. Our results demonstrate that although hES cells have to be grown on Matrigel, the cocultured hES cells could be massively expanded on plastic with a morphology and expression of surface markers similar to mesenchymal stem cells. Coculture further resulted in a more homogenous pellet and significantly increased cartilage matrix production, both in high-density pellet mass cultures and hyaluronan-based scaffolds. Moreover, cocultured cells formed colonies in agarose suspension culture, also demonstrating differentiation toward chondroprogenitor cells, whereas no colonies were detected in the hES cell cultures. Coculture further resulted in a significantly decreased osteogenic potential. No teratoma formation was detected. Our results confirm the potential of the culture microenvironment to influence hES cell morphology, expansion potential, and differentiation abilities over several population doublings.
  •  
3.
  • Bigdeli, Narmin, 1974, et al. (författare)
  • Superior Osteogenic Capacity of Human Embryonic Stem Cells Adapted to Matrix-Free Growth Compared to Human Mesenchymal Stem Cells.
  • 2010
  • Ingår i: Tissue engineering. Part A. - : Mary Ann Liebert Inc. - 1937-335X .- 1937-3341. ; 16:11, s. 3427-3440
  • Tidskriftsartikel (refereegranskat)abstract
    • Human mesenchymal stem cells (hMSCs) represent a promising source of cells for bone tissue engineering. However, their low frequencies and limited proliferation restrict their clinical utility. An alternative is the use of human embryonic stem cells (hESCs), but labor-intensive expansion with the need for coating support limits their clinical use. We have previously derived a cell line from hESCs denoted matrix-free growth (MFG)-hESC that are independent of coating support for expansion, and we here compare its osteogenic capacity to that of hMSCs. Microarray analysis of hMSCs and MFG-hESCs revealed differential expression of genes involved in ossification. MFG-hESCs have significantly higher expression of secreted phosphoprotein 1 (SPP1) during osteogenic differentiation, whereas the opposite was true for alkaline phosphatase (ALPL), transforming growth factor, beta 1 (TGFB2), runt-related transcription factor 2 (RUNX2), and forkhead box C1 (FOXC1), as well as the activity of the ALPL enzyme, demonstrating that these two cell types differentiate into the osteogenic lineage using different signaling pathways. von Kossa staining, time-of-flight secondary ion mass spectrometry, and measurement of calcium and phosphate in the extracellular matrix demonstrated a superior ability of the MFG-hESCs to produce a mineralized matrix compared to hMSCs. The superior ability of the MFG-hESCs to form mineralized matrix compared to hMSCs demonstrates that MFG-hESCs are a promising alternative to the use of adult stem cells in future bone regenerative applications.
  •  
4.
  • Bigdeli, Narmin, 1974, et al. (författare)
  • Upregulation of adhesion molecules sustains matrix-free growth of human embryonic stem cells
  • 2018
  • Ingår i: Open Stem Cell Journal. - : Bentham Science Publishers Ltd.. - 1876-8938. ; 5:1, s. 14-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Despite recent advances in culture techniques for undifferentiated human Embryonic Stem Cells (hESCs), further improvements are required to facilitate research and translation of these cells in clinical settings. We have previously derived hESC lines that can be cultured in their undifferentiated state on regular plastic culture dishes, without the need for feeder cells or other coating supports, denoted Matrix-Free Growth hESCs (MFG-hESCs). Objective: In this study, we further characterize and compare MFG-hESCs to hESCs in order to understand the molecular differences responsible for the unique ability of MFG-hESCs. Results: Microarray analysis demonstrated that MFG-hESCs highly resemble feeder-cultured hESCs in global gene expression profile. Two identified groups of genes with differential expression were those encoding for ribosomal proteins and attachment proteins, such as the RGD (Arg-Gly-Asp)-associated proteins. Real-time PCR and flow cytometry corroborated the microarray results. Culture of MFG-hESCs in the presence of RGD peptides resulted in decreased attachment ability compared to cells cultured in the presence of RGES (Arg-Gly-Asp-Ser) peptides. Conclusion: This study demonstrates that MFG-hESC lines overexpress cell attachment proteins but retain the typical characteristics of undifferentiated feeder-cultured hESCs. The ability to culture high-quality pluripotent stem cells in feeder-and matrix-free conditions creates a new opportunities for their large-scale manufacturing for experimental research and translational applications. © 2018 Bigdeli et al.
  •  
5.
  • Boreström, Cecilia, 1974, et al. (författare)
  • Footprint-Free Human Induced Pluripotent Stem Cells From Articular Cartilage With Redifferentiation Capacity: A First Step Toward a Clinical-Grade Cell Source.
  • 2014
  • Ingår i: Stem cells translational medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 3:4, s. 433-447
  • Tidskriftsartikel (refereegranskat)abstract
    • Human induced pluripotent stem cells (iPSCs) are potential cell sources for regenerative medicine; however, clinical applications of iPSCs are restricted because of undesired genomic modifications associated with most reprogramming protocols. We show, for the first time, that chondrocytes from autologous chondrocyte implantation (ACI) donors can be efficiently reprogrammed into iPSCs using a nonintegrating method based on mRNA delivery, resulting in footprint-free iPSCs (no genome-sequence modifications), devoid of viral factors or remaining reprogramming molecules. The search for universal allogeneic cell sources for the ACI regenerative treatment has been difficult because making chondrocytes with high matrix-forming capacity from pluripotent human embryonic stem cells has proven challenging and human mesenchymal stem cells have a predisposition to form hypertrophic cartilage and bone. We show that chondrocyte-derived iPSCs can be redifferentiated in vitro into cartilage matrix-producing cells better than fibroblast-derived iPSCs and on par with the donor chondrocytes, suggesting the existence of a differentiation bias toward the somatic cell origin and making chondrocyte-derived iPSCs a promising candidate universal cell source for ACI. Whole-genome single nucleotide polymorphism array and karyotyping were used to verify the genomic integrity and stability of the established iPSC lines. Our results suggest that RNA-based technology eliminates the risk of genomic integrations or aberrations, an important step toward a clinical-grade cell source for regenerative medicine such as treatment of cartilage defects and osteoarthritis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy