SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindblad F.) ;pers:(Karlsson Elinor K.)"

Sökning: WFRF:(Lindblad F.) > Karlsson Elinor K.

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Christmas, Matthew, et al. (författare)
  • Evolutionary constraint and innovation across hundreds of placental mammals
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6643
  • Tidskriftsartikel (refereegranskat)abstract
    • Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (similar to 10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.
  •  
2.
  • Genereux, Diane P., et al. (författare)
  • A comparative genomics multitool for scientific discovery and conservation
  • 2020
  • Ingår i: Nature. - : NATURE RESEARCH. - 0028-0836 .- 1476-4687. ; 587:7833, s. 240-245
  • Tidskriftsartikel (refereegranskat)abstract
    • A whole-genome alignment of 240 phylogenetically diverse species of eutherian mammal-including 131 previously uncharacterized species-from the Zoonomia Project provides data that support biological discovery, medical research and conservation. The Zoonomia Project is investigating the genomics of shared and specialized traits in eutherian mammals. Here we provide genome assemblies for 131 species, of which all but 9 are previously uncharacterized, and describe a whole-genome alignment of 240 species of considerable phylogenetic diversity, comprising representatives from more than 80% of mammalian families. We find that regions of reduced genetic diversity are more abundant in species at a high risk of extinction, discern signals of evolutionary selection at high resolution and provide insights from individual reference genomes. By prioritizing phylogenetic diversity and making data available quickly and without restriction, the Zoonomia Project aims to support biological discovery, medical research and the conservation of biodiversity.
  •  
3.
  • Thomas, Rachael, et al. (författare)
  • Construction of a 2-Mb resolution BAC microarray for CGH analysis of canine tumors
  • 2005
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 15:12, s. 1831-1837
  • Tidskriftsartikel (refereegranskat)abstract
    • Recognition of the domestic dog as a model for the comparative study of human genetic traits has led to major advances in canine genomics. The pathophysiological similarities shared between many human and dog diseases extend to a range of cancers. Human tumors frequently display recurrent chromosome aberrations, many of which are hallmarks of particular tumor subtypes. Using a range of molecular cytogenetic techniques we have generated evidence indicating that this is also true of canine tumors. Detailed knowledge of these genomic abnormalities has the potential to aid diagnosis, prognosis, and the selection of appropriate therapy in both species. We recently improved the efficiency and resolution of canine cancer cytogenetics studies by developing a small-scale genomic microarray comprising a panel of canine BAC clones representing subgenomic regions of particular interest. We have now extended these studies to generate a comprehensive canine comparative genomic hybridization (CGH) array that comprises 1158 canine BAC clones ordered throughout the genome with an average interval of 2 Mb. Most of the clones (84.3%) have been assigned to a precise cytogenetic location by fluorescence in situ hybridization (FISH), and 98.5% are also directly anchored within the current canine genome assembly, permitting direct translation from cytogenetic aberration to DNA sequence. We are now using this resource routinely for high-throughput array CGH and single-locus probe analysis of a range of canine cancers. Here we provide examples of the varied applications of this resource to tumor cytogenetics, in combination with other molecular cytogenetic techniques.
  •  
4.
  • Karlsson, Elinor K, et al. (författare)
  • Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B
  • 2013
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X .- 1474-7596. ; 14:12
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Canine osteosarcoma is clinically nearly identical to the human disease, but is common and highly heritable, making genetic dissection feasible.RESULTS: Through genome-wide association analyses in three breeds (greyhounds, Rottweilers, and Irish wolfhounds), we identify 33 inherited risk loci explaining 55% to 85% of phenotype variance in each breed. The greyhound locus exhibiting the strongest association, located 150 kilobases upstream of the genes CDKN2A/B, is also the most rearranged locus in canine osteosarcoma tumors. The top germline candidate variant is found at a >90% frequency in Rottweilers and Irish wolfhounds, and alters an evolutionarily constrained element that we show has strong enhancer activity in human osteosarcoma cells. In all three breeds, osteosarcoma-associated loci and regions of reduced heterozygosity are enriched for genes in pathways connected to bone differentiation and growth. Several pathways, including one of genes regulated by miR124, are also enriched for somatic copy-number changes in tumors.CONCLUSIONS: Mapping a complex cancer in multiple dog breeds reveals a polygenic spectrum of germline risk factors pointing to specific pathways as drivers of disease.
  •  
5.
  • Kim, Jong Hyuk, et al. (författare)
  • Genomically Complex Human Angiosarcoma and Canine Hemangiosarcoma Establish Convergent Angiogenic Transcriptional Programs Driven by Novel Gene Fusions
  • 2021
  • Ingår i: Molecular Cancer Research. - : American Association For Cancer Research (AACR). - 1541-7786 .- 1557-3125. ; 19:5, s. 847-861
  • Tidskriftsartikel (refereegranskat)abstract
    • Sporadic angiosarcomas are aggressive vascular sarcomas whose rarity and genomic complexity present significant obstacles in deciphering the pathogenic significance of individual genetic alterations. Numerous fusion genes have been identified across multiple types of cancers, but their existence and significance remain unclear in sporadic angiosarcomas. In this study, we leveraged RNA-sequencing data from 13 human angiosarcomas and 76 spontaneous canine hemangiosarcomas to identify fusion genes associated with spontaneous vascular malignancies. Ten novel protein-coding fusion genes, including TEX2-PECAM1 and ATP8A2-FLT1, were identified in seven of the 13 human tumors, with two tumors showing mutations of TP53. HRAS and NRAS mutations were found in angiosarcomas without fusions or TP53 mutations. We found 15 novel protein-coding fusion genes including MYO16-PTK2, GABRA3-FLT1, and AKT3-XPNPEP1 in 11 of the 76 canine hemangiosarcomas; these fusion genes were seen exclusively in tumors of the angiogenic molecular subtype that contained recurrent mutations in TP53, PIK3CA, PIK3R1, and NRAS. In particular, fusion genes and mutations of TP53 cooccurred in tumors with higher frequency than expected by random chance, and they enriched gene signatures predicting activation of angiogenic pathways. Comparative transcriptomic analysis of human angiosarcomas and canine hemangiosarcomas identified shared molecular signatures associated with activation of PI3K/AKT/mTOR pathways. Our data suggest that genome instability induced by TP53 mutations might create a predisposition for fusion events that may contribute to tumor progression by promoting selection and/or enhancing fitness through activation of convergent angiogenic pathways in this vascular malignancy. Implications: This study shows that, while drive events of malignant vasoformative tumors of humans and dogs include diverse mutations and stochastic rearrangements that create novel fusion genes, convergent transcriptional programs govern the highly conserved morphologic organization and biological behavior of these tumors in both species.
  •  
6.
  • Larson, Greger, et al. (författare)
  • Rethinking dog domestication by integrating genetics, archeology, and biogeography
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109, s. 8878-8883
  • Tidskriftsartikel (refereegranskat)abstract
    • The dog was the first domesticated animal but it remains uncertain when the domestication process began and whether it occurred just once or multiple times across the Northern Hemisphere. To ascertain the value of modern genetic data to elucidate the origins of dog domestication, we analyzed 49,024 autosomal SNPs in 1,375 dogs (representing 35 breeds) and 19 wolves. After combining our data with previously published data, we contrasted the genetic signatures of 121 breeds with a worldwide archeological assessment of the earliest dog remains. Correlating the earliest archeological dogs with the geographic locations of 14 so-called "ancient" breeds (defined by their genetic differentiation) resulted in a counterintuitive pattern. First, none of the ancient breeds derive from regions where the oldest archeological remains have been found. Second, three of the ancient breeds (Basenjis, Dingoes, and New Guinea Singing Dogs) come from regions outside the natural range of Canis lupus (the dog's wild ancestor) and where dogs were introduced more than 10,000 y after domestication. These results demonstrate that the unifying characteristic among all genetically distinct so-called ancient breeds is a lack of recent admixture with other breeds likely facilitated by geographic and cultural isolation. Furthermore, these genetically distinct ancient breeds only appear so because of their relative isolation, suggesting that studies of modern breeds have yet to shed light on dog origins. We conclude by assessing the limitations of past studies and how next-generation sequencing of modern and ancient individuals may unravel the history of dog domestication.
  •  
7.
  • Megquier, Katherine, et al. (författare)
  • Comparative Genomics Reveals Shared Mutational Landscape in Canine Hemangiosarcoma and Human Angiosarcoma
  • 2019
  • Ingår i: Molecular Cancer Research. - 1541-7786 .- 1557-3125. ; 17:12, s. 2410-2421
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiosarcoma is a highly aggressive cancer of blood vessel-forming cells with few effective treatment options and high patient mortality. It is both rare and heterogenous, making large, well-powered genomic studies nearly impossible. Dogs commonly suffer from a similar cancer, called hemangiosarcoma, with breeds like the golden retriever carrying heritable genetic factors that put them at high risk. If the clinical similarity of canine hemangiosarcoma and human angiosarcoma reflects shared genomic etiology, dogs could be a critically needed model for advancing angiosarcoma research. We assessed the genomic landscape of canine hemangiosarcoma via whole-exome sequencing (47 golden retriever hemangiosarcomas) and RNA sequencing (74 hemangiosarcomas from multiple breeds). Somatic coding mutations occurred most frequently in the tumor suppressor TP53 (59.6% of cases) as well as two genes in the PI3K pathway: the oncogene PIK3CA (29.8%) and its regulatory subunit PIK3R1 (8.5%). The predominant mutational signature was the age-associated deamination of cytosine to thymine. As reported in human angiosarcoma, CDKN2A/B was recurrently deleted and VEGFA, KDR, and KIT recurrently gained. We compared the canine data to human data recently released by The Angiosarcoma Project, and found many of the same genes and pathways significantly enriched for somatic mutations, particularly in breast and visceral angiosarcomas. Canine hemangiosarcoma closely models the genomic landscape of human angiosarcoma of the breast and viscera, and is a powerful tool for investigating the pathogenesis of this devastating disease. IMPLICATIONS: We characterize the genomic landscape of canine hemangiosarcoma and demonstrate its similarity to human angiosarcoma.
  •  
8.
  • Olsson, Mia, et al. (författare)
  • A Novel Unstable Duplication Upstream of HAS2 Predisposes to a Breed-Defining Skin Phenotype and a Periodic Fever Syndrome in Chinese Shar-Pei Dogs
  • 2011
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 7:3, s. e1001332-
  • Tidskriftsartikel (refereegranskat)abstract
    • Hereditary periodic fever syndromes are characterized by recurrent episodes of fever and inflammation with no known pathogenic or autoimmune cause. In humans, several genes have been implicated in this group of diseases, but the majority of cases remain unexplained. A similar periodic fever syndrome is relatively frequent in the Chinese Shar-Pei breed of dogs. In the western world, Shar-Pei have been strongly selected for a distinctive thick and heavily folded skin. In this study, a mutation affecting both these traits was identified. Using genome-wide SNP analysis of Shar-Pei and other breeds, the strongest signal of a breed-specific selective sweep was located on chromosome 13. The same region also harbored the strongest genome-wide association (GWA) signal for susceptibility to the periodic fever syndrome (p(raw) = 2.3 x 10(-6), p(genome) = 0.01). Dense targeted resequencing revealed two partially overlapping duplications, 14.3 Kb and 16.1 Kb in size, unique to Shar-Pei and upstream of the Hyaluronic Acid Synthase 2 (HAS2) gene. HAS2 encodes the rate-limiting enzyme synthesizing hyaluronan (HA), a major component of the skin. HA is up-regulated and accumulates in the thickened skin of Shar-Pei. A high copy number of the 16.1 Kb duplication was associated with an increased expression of HAS2 as well as the periodic fever syndrome (p, < 0.0001). When fragmented, HA can act as a trigger of the innate immune system and stimulate sterile fever and inflammation. The strong selection for the skin phenotype therefore appears to enrich for a pleiotropic mutation predisposing these dogs to a periodic fever syndrome. The identification of HA as a major risk factor for this canine disease raises the potential of this glycosaminoglycan as a risk factor for human periodic fevers and as an important driver of chronic inflammation.
  •  
9.
  • Osmanski, Austin B., et al. (författare)
  • Insights into mammalian TE diversity through the curation of 248 genome assemblies
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6643, s. 371-
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined transposable element (TE) content of 248 placental mammal genome assemblies, the largest de novo TE curation effort in eukaryotes to date. We found that although mammals resemble one another in total TE content and diversity, they show substantial differences with regard to recent TE accumulation. This includes multiple recent expansion and quiescence events across the mammalian tree. Young TEs, particularly long interspersed elements, drive increases in genome size, whereas DNA transposons are associated with smaller genomes. Mammals tend to accumulate only a few types of TEs at any given time, with one TE type dominating. We also found association between dietary habit and the presence of DNA transposon invasions. These detailed annotations will serve as a benchmark for future comparative TE analyses among placental mammals.
  •  
10.
  • Paulat, Nicole S., et al. (författare)
  • Chiropterans Are a Hotspot for Horizontal Transfer of DNA Transposons in Mammalia
  • 2023
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 40:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy