SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindblad Toh Kerstin) ;pers:(Andersson Leif)"

Sökning: WFRF:(Lindblad Toh Kerstin) > Andersson Leif

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Leif, et al. (författare)
  • ZBED6 : the birth of a new transcription factor in the common ancestor of placental mammals
  • 2010
  • Ingår i: Transcription. - : Informa UK Limited. - 2154-1272 .- 2154-1264. ; 1:3, s. 144-148
  • Tidskriftsartikel (refereegranskat)abstract
    • A DNA transposon integrated into -the genome of a primitive mammal some 200 million years ago and, millions of years later, it evolved an essential function in the common ancestor of all placental mammals. This protein, now named ZBED6, was recently discovered because a mutation disrupting one of its binding sites, in an intron of the IGF2 gene, makes pigs grow more muscle. These findings have revealed a new mechanism for regulating muscle growth as well as a novel transcription factor that appears to be of major importance for transcriptional regulation in placental mammals.
  •  
2.
  • Baranowska Körberg, Izabella, et al. (författare)
  • A Simple Repeat Polymorphism in the MITF-M Promoter Is a Key Regulator of White Spotting in Dogs
  • 2014
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:8, s. e104363-
  • Tidskriftsartikel (refereegranskat)abstract
    • The white spotting locus (S) in dogs is colocalized with the MITF (microphtalmia-associated transcription factor) gene. The phenotypic effects of the four S alleles range from solid colour (S) to extreme white spotting (s(w)). We have investigated four candidate mutations associated with the s(w) allele, a SINE insertion, a SNP at a conserved site and a simple repeat polymorphism all associated with the MITF-M promoter as well as a 12 base pair deletion in exon 1B. The variants associated with white spotting at all four loci were also found among wolves and we conclude that none of these could be a sole causal mutation, at least not for extreme white spotting. We propose that the three canine white spotting alleles are not caused by three independent mutations but represent haplotype effects due to different combinations of causal polymorphisms. The simple repeat polymorphism showed extensive diversity both in dogs and wolves, and allele-sharing was common between wolves and white spotted dogs but was non-existent between solid and spotted dogs as well as between wolves and solid dogs. This finding was unexpected as Solid is assumed to be the wild-type allele. The data indicate that the simple repeat polymorphism has been a target for selection during dog domestication and breed formation. We also evaluated the significance of the three MITF-M associated polymorphisms with a Luciferase assay, and found conclusive evidence that the simple repeat polymorphism affects promoter activity. Three alleles associated with white spotting gave consistently lower promoter activity compared with the allele associated with solid colour. We propose that the simple repeat polymorphism affects cooperativity between transcription factors binding on either flanking sides of the repeat. Thus, both genetic and functional evidence show that the simple repeat polymorphism is a key regulator of white spotting in dogs.
  •  
3.
  • Berglund, Jonas, 1983- (författare)
  • Meiotic Recombination in Human and Dog : Targets, Consequences and Implications for Genome Evolution
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Understanding the mechanism of recombination has important implications for genome evolution and genomic variability. The work presented in this thesis studies the properties of recombination by investigating the effects it has on genome evolution in humans and dogs.Using alignments of human genes with chimpanzee and macaque orthologues we studied substitution patterns along the human lineage and scanned for evidence of positive selection. The properties mirror the situation in human non-coding sequences with the fixation bias ‘GC-biased gene conversion’ (gBGC) as a driving force in the most rapidly evolving regions. By assigning candidate genes to distinct classes of evolutionary forces we quantified the extent of those genes affected by gBGC to 20%. This suggests that human-specific characters can be prompted by the fixation bias of gBGC, which can be mistaken for selection.The gene PRDM9 controls recombination in most mammals, but is lacking in dogs. Using whole-genome alignments of dog with related species we examined the effects of PRDM9 inactivation. Additionally, we analyzed genomic variation in the genomes of several dog breeds. We identified that non-allelic homologous recombination (NAHR) via sequence identity, often GC-rich, creates structural variants of genomic regions. We show that these regions, which are also found in dog recombination hotspots, are a subset of unmethylated CpG-islands (CGIs). We inferred that CGIs have experienced a drastic increase in biased substitution rates, concurrent with a shift of recombination to target these regions. This enables recurrent episodes of gBGC to shape their distribution.The work presented in this thesis demonstrates the importance of meiotic recombination on patterns of molecular evolution and genomic variability in humans and dogs. Bioinformatic analyses identified mechanisms that regulate genome composition. gBGC is presented as an alternative to positive selection and is revealed as a major factor affecting allele configuration and the emergence of accelerated evolution on the human lineage. Characterization of recombination-induced sequence patterns highlights the potential of non-methylation and establishes unmethylated CGIs as targets of meiotic recombination in dogs. These observations describe recombination as an interesting process in genome evolution and provide further insights into the mechanisms of genomic variability.
  •  
4.
  • Carneiro, Miguel, et al. (författare)
  • Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication
  • 2014
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 345:6200, s. 1074-1079
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for the rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified more than 100 selective sweeps specific to domestic rabbits but only a relatively small number of fixed (or nearly fixed) single-nucleotide polymorphisms (SNPs) for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved noncoding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that because of a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few domestication loci.
  •  
5.
  • Imsland, Freyja (författare)
  • Monogenic Traits Associated with Structural Variants in Chicken and Horse : Allelic and Phenotypic Diversity of Visually Appealing Traits
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Domestic animals have rich phenotypic diversity that can be explored to advance our understanding of the relationship between molecular genetics and phenotypic variation. Since the advent of second generation sequencing, it has become easier to identify structural variants and associate them with phenotypic outcomes. This thesis details studies on three such variants associated with monogenic traits.The first studies on Rose-comb in the chicken were published over a century ago, seminally describing Mendelian inheritance and epistatic interaction in animals. Homozygosity for the otherwise dominant Rose-comb allele was later associated with reduced rooster fertility. We show that a 7.38 Mb inversion is causal for Rose-comb, and that two alleles exist for Rose-comb, R1 and R2. A novel genomic context for the gene MNR2 is causative for the comb phenotype, and the bisection of the gene CCDC108 is associated with fertility issues. The recombined R2 allele has intact CCDC108, and normal fertility.The dominant phenotype Greying with Age in horses was previously associated with an intronic duplication in STX17. By utilising second generation sequencing we have examined the genomic region surrounding the duplication in detail, and excluded all other discovered variants as causative for Grey.Dun is the ancestral coat colour of equids, where the individual is mostly pale in colour, but carries intensely pigmented primitive markings, most notably a dorsal stripe. Dun is a dominant trait, and yet most domestic horses are non-dun in colour and intensely pigmented. We show that Dun colour is established by radially asymmetric expression of the transcription factor TBX3 in hair follicles. This results in a microscopic spotting phenotype on the level of the individual hair, giving the impression of pigment dilution. Non-dun colour is caused by two different alleles, non-dun1 and non-dun2, both of which disrupt the TBX3-mediated regulation of pigmentation. Non-dun1 is associated with a SNP variant 5 kb downstream of TBX3, and non-dun2 with a 1.6 kb deletion that overlaps the non-dun1 SNP. Homozygotes for non-dun2 show a more intensely pigmented appearance than horses with one or two non-dun1 alleles. We have also shown by genotyping of ancient DNA that non-dun1 predates domestication.
  •  
6.
  • Imsland, Freyja, et al. (författare)
  • Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation underlying Dun camouflage colour in horses
  • 2016
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 48:2, s. 152-158
  • Tidskriftsartikel (refereegranskat)abstract
    • Dun is a wild-type coat color in horses characterized by pigment dilution with a striking pattern of dark areas termed primitive markings. Here we show that pigment dilution in Dun horses is due to radially asymmetric deposition of pigment in the growing hair caused by localized expression of the T-box 3 (TBX3) transcription factor in hair follicles, which in turn determines the distribution of hair follicle melanocytes. Most domestic horses are non-dun, a more intensely pigmented phenotype caused by regulatory mutations impairing TBX3 expression in the hair follicle, resulting in a more circumferential distribution of melanocytes and pigment granules in individual hairs. We identified two different alleles (non-dun1 and non-dun2) causing non-dun color. non-dun2 is a recently derived allele, whereas the Dun and non-dun1 alleles are found in ancient horse DNA, demonstrating that this polymorphism predates horse domestication. These findings uncover a new developmental role for T-box genes and new aspects of hair follicle biology and pigmentation.
  •  
7.
  • Jiang, Lin (författare)
  • Functional Studies of Genes Associated with Muscle Growth in Pigs and Hair Greying in Horses
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Domestic animals have become very different from their wild ancestors during domestication and animal breeding. This provides a good model to unravel the molecular mechanisms underlying phenotypic variation. In my thesis I have studied genes affecting two important traits, leanness in pigs and hair greying-associated melanoma in horses.In the first part of the thesis, I focused on an intronic mutation leading to more muscle growth and less fat deposition in domestic pigs to identify a transcription factor (TF) that binds to the regulatory element overlapping with the mutation. The aim has been to further study the function of the previously unknown TF in mouse myoblast cells and in insulin-producing cells (Paper I-III). We discovered a new TF ZBED6 binding to intron 3 of the IGF2 gene, in which a single nucleotide substitution in pigs abrogates the binding and causes increased leanness in domestic pigs. Silencing of ZBED6 expression in mouse myoblasts increased Igf2 expression, cell proliferation and migration, and myotube formation. This result is in line with the increased leanness phenotype in mutant pigs. Chromatin Immunoprecipitation-sequencing (ChIP-seq) using an anti-ZBED6 antibody identified 1200 ZBED6 target genes besides IGF2 and many are TFs controlling fundamental biological processes. In the first follow-up study we found ZBED6 mainly affected the expression of muscle protein genes by directly regulating Igf2 and Twist2 expression, in agreement with our previous observation of faster myotube formation in ZBED6-silenced cells. ChIP-seq with antibodies against six different histone modifications revealed that ZBED6 preferentially binds to active promoters and modulates transcriptional activity by a novel mechanism rather than by recruiting repressive histone modifications. The second follow-up study revealed that ZBED6 affects the morphology and insulin content and release in pancreatic ß cells.In the second part (Paper IV), we investigate the functional significance of an intronic duplication in the Syntaxin 17 (STX17) gene causing hair greying and melanoma in horses. We found two Microphtalmia-associated transcription factor (MITF) binding sites within the duplication and showed that the duplicated sequence up-regulates reporter gene expression in a melanocyte-specific manner both by reporter assays in mouse melanocytes and in transgenic zebrafish. These results established that the intronic duplication acts as a melanocyte-specific enhancer that becomes much stronger when it is duplicated.
  •  
8.
  • Karlsson, Elinor K., et al. (författare)
  • Efficient mapping of mendelian traits in dogs through genome-wide association
  • 2007
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 39:11, s. 1321-1328
  • Tidskriftsartikel (refereegranskat)abstract
    • With several hundred genetic diseases and an advantageous genome structure, dogs are ideal for mapping genes that cause disease. Here we report the development of a genotyping array with |[sim]|27,000 SNPs and show that genome-wide association mapping of mendelian traits in dog breeds can be achieved with only |[sim]|20 dogs. Specifically, we map two traits with mendelian inheritance: the major white spotting (S) locus and the hair ridge in Rhodesian ridgebacks. For both traits, we map the loci to discrete regions of <1 Mb. Fine-mapping of the S locus in two breeds refines the localization to a region of |[sim]|100 kb contained within the pigmentation-related gene MITF. Complete sequencing of the white and solid haplotypes identifies candidate regulatory mutations in the melanocyte-specific promoter of MITF. Our results show that genome-wide association mapping within dog breeds, followed by fine-mapping across multiple breeds, will be highly efficient and generally applicable to trait mapping, providing insights into canine and human health.
  •  
9.
  • Larson, Greger, et al. (författare)
  • Rethinking dog domestication by integrating genetics, archeology, and biogeography
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109, s. 8878-8883
  • Tidskriftsartikel (refereegranskat)abstract
    • The dog was the first domesticated animal but it remains uncertain when the domestication process began and whether it occurred just once or multiple times across the Northern Hemisphere. To ascertain the value of modern genetic data to elucidate the origins of dog domestication, we analyzed 49,024 autosomal SNPs in 1,375 dogs (representing 35 breeds) and 19 wolves. After combining our data with previously published data, we contrasted the genetic signatures of 121 breeds with a worldwide archeological assessment of the earliest dog remains. Correlating the earliest archeological dogs with the geographic locations of 14 so-called "ancient" breeds (defined by their genetic differentiation) resulted in a counterintuitive pattern. First, none of the ancient breeds derive from regions where the oldest archeological remains have been found. Second, three of the ancient breeds (Basenjis, Dingoes, and New Guinea Singing Dogs) come from regions outside the natural range of Canis lupus (the dog's wild ancestor) and where dogs were introduced more than 10,000 y after domestication. These results demonstrate that the unifying characteristic among all genetically distinct so-called ancient breeds is a lack of recent admixture with other breeds likely facilitated by geographic and cultural isolation. Furthermore, these genetically distinct ancient breeds only appear so because of their relative isolation, suggesting that studies of modern breeds have yet to shed light on dog origins. We conclude by assessing the limitations of past studies and how next-generation sequencing of modern and ancient individuals may unravel the history of dog domestication.
  •  
10.
  • Lequarre, Anne-Sophie, et al. (författare)
  • LUPA : A European initiative taking advantage of the canine genome architecture for unravelling complex disorders in both human and dogs
  • 2011
  • Ingår i: The Veterinary Journal. - : Elsevier BV. - 1090-0233 .- 1532-2971. ; 189:2, s. 155-159
  • Forskningsöversikt (refereegranskat)abstract
    • The domestic dog offers a unique opportunity to explore the genetic basis of disease, morphology and behaviour. Humans share many diseases with our canine companions, making dogs an ideal model organism for comparative disease genetics. Using newly developed resources, genome-wide association studies in dog breeds are proving to be exceptionally powerful. Towards this aim, veterinarians and geneticists from 12 European countries are collaborating to collect and analyse the DNA from large cohorts of dogs suffering from a range of carefully defined diseases of relevance to human health. This project, named LUPA, has already delivered considerable results. The consortium has collaborated to develop a new high density single nucleotide polymorphism (SNP) array. Mutations for four monogenic diseases have been identified and the information has been utilised to find mutations in human patients. Several complex diseases have been mapped and fine mapping is underway. These findings should ultimately lead to a better understanding of the molecular mechanisms underlying complex diseases in both humans and their best friend.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
Typ av publikation
tidskriftsartikel (13)
doktorsavhandling (5)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Lindblad-Toh, Kersti ... (15)
Lindgren, Gabriella (4)
Andersson, Göran (4)
Hedhammar, Åke (3)
Pontén, Fredrik (2)
visa fler...
Mikko, Sofia (2)
Lindroth, Anders (2)
Sigurdsson, Snaevar (2)
Strömberg, Sara (2)
von Euler, Henrik (2)
Liu, J. (1)
Edgar, R C (1)
Nilsson, Mats (1)
Hasegawa, T. (1)
Kämpe, Olle (1)
Pielberg, Gerli (1)
Tonomura, Noriko (1)
Lennartsson, Johan (1)
Zoli, M (1)
Jensen, Per (1)
Hallböök, Finn (1)
Bed'Hom, Bertrand (1)
Wadelius, Claes (1)
Grabherr, Manfred (1)
Carlborg, Örjan (1)
Barrell, Daniel (1)
Ruffier, Magali (1)
Remmers, Elaine F. (1)
Kastner, Daniel L. (1)
Garber, M (1)
Albert, Frank W. (1)
Carneiro, Miguel (1)
Villafuerte, Rafael (1)
Ferrand, Nuno (1)
Besnier, Francois (1)
Ho, Simon Y. W. (1)
Dobney, Keith (1)
Siegel, Paul (1)
Larson, Greger (1)
Sherwood, Ellen (1)
Alfoeldi, Jessica (1)
Di Palma, Federica (1)
Mauceli, Evan (1)
Jaffe, Jacob D. (1)
Heiman, David (1)
Johnson, Jeremy (1)
Searle, Steve (1)
Turner-Maier, Jason (1)
Young, Sarah (1)
visa färre...
Lärosäte
Uppsala universitet (19)
Sveriges Lantbruksuniversitet (10)
Karolinska Institutet (3)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
Språk
Engelska (19)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Lantbruksvetenskap (9)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy