SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindbom L) ;pers:(Herwald Heiko)"

Sökning: WFRF:(Lindbom L) > Herwald Heiko

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Johansson, Joakim, et al. (författare)
  • Heparin-binding protein (HBP): an early marker of respiratory failure after trauma?
  • 2013
  • Ingår i: Acta Anaesthesiologica Scandinavica. - : Wiley-Blackwell. - 0001-5172 .- 1399-6576. ; 57:5, s. 580-586
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Trauma and its complications contribute to morbidity and mortality in the general population. Trauma victims are susceptible to acute respiratory distress syndrome (ARDS) and sepsis. Polymorphonuclear leucocytes (PMNs) are activated after trauma and there is substantial evidence of their involvement in the development of ARDS. Activated PMNs release heparin-binding protein (HBP), a granule protein previously shown to be involved in acute inflammatory reactions. We hypothesised that there is an increase in plasma HBP content after trauma and that the increased levels are related to the severity of the trauma or later development of severe sepsis and organ failure (ARDS). Methods and Material We investigated HBP in plasma samples within 36h from trauma in 47 patients admitted to a level one trauma centre with a mean injury severity score (ISS) of 26 (2134). ISS, admission sequential organ failure assessment (SOFA) and Acute Physiology and Chronic Health Evaluation (APACHE) II scores were recorded at admission. ARDS and presence of severe sepsis were determined daily during intensive care. Results We found no correlation between individual maximal plasma HBP levels at admission and ISS, admission SOFA or APACHE II. We found, however, a correlation between HBP levels and development of ARDS (P=0.026, n=47), but not to severe sepsis. Conclusion HBP is a potential biomarker candidate for early detection of ARDS development after trauma. Further research is required to confirm a casual relationship between plasma HBP and the development of ARDS.
  •  
2.
  • Kaukonen, K. -M., et al. (författare)
  • Heparin-binding protein (HBP) in critically ill patients with influenza A (H1N1) infection
  • 2013
  • Ingår i: Clinical Microbiology and Infection. - : Elsevier BV. - 1469-0691 .- 1198-743X. ; 19:12, s. 1122-1128
  • Tidskriftsartikel (refereegranskat)abstract
    • Heparin-binding protein (HBP) is an inducer of vascular endothelial leakage in severe infections. Fluid accumulation into alveoli is a general finding in acute respiratory distress syndrome (ARDS). Severe acute respiratory failure with ARDS is a complication of influenza A(H1N1) infection. Accordingly, we studied the HBP levels in critically ill patients with infection of influenza A(H1N1).Critically ill patients in four intensive care units (ICUs) with polymerase chain reaction (PCR) confirmed infection of influenza A(H1N1) were prospectively evaluated. We collected clinical data and blood samples at ICU admission and on day 2. Twenty-nine patients participated in the study. Compared with normal plasma levels, the HBP concentrations were highly elevated at baseline and at day 2: 98ng/mL (62-183ng/mL) and 93ng/mL (62-271ng/mL) (p 0.876), respectively. HBP concentrations were correlated with the lowest ratio of partial pressure of oxygen in arterial blood to fraction of inspired oxygen (PF ratio) during the ICU stay (rho=-0.321, p<0.05). In patients with and without invasive mechanical ventilation, the baseline HBP levels were 152ng/mL (72-237ng/mL) and 83ng/mL (58-108ng/mL) (p 0.088), respectively. The respective values at day 2 were 223ng/mL (89-415ng/mL) and 81ng/mL (55-97ng/mL) (p<0.05). The patients with septic shock/severe sepsis (compared with those without) did not have statistically significant differences in HBP concentrations at baseline or day 2. HBP concentrations are markedly elevated in all critically ill patients with influenza A(H1N1) infection. The increase in HBP concentrations seems to be associated with more pronounced respiratory dysfunction.
  •  
3.
  • Kenne, Ellinor, et al. (författare)
  • Neutrophils engage the kallikrein-kinin system to open up the endothelial barrier in acute inflammation
  • 2019
  • Ingår i: FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - 1530-6860. ; 33:2, s. 2599-2609
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutrophil recruitment and plasma exudation are key elements in the immune response to injury or infection. Activated neutrophils stimulate opening of the endothelial barrier; however, the underlying mechanisms have remained largely unknown. In this study, we identified a pivotal role of the proinflammatory kallikrein-kinin system and consequent formation of bradykinin in neutrophil-evoked vascular leak. In mouse and hamster models of acute inflammation, inhibitors of bradykinin generation, and signaling markedly reduced plasma exudation in response to chemoattractant activation of neutrophils. The neutrophil-driven leak was likewise suppressed in mice deficient in either the bradykinin B2 receptor or factor XII (initiator of the kallikrein-kinin system). In human endothelial cell monolayers, material secreted from activated neutrophils induced cytoskeletal rearrangement, leading to paracellular gap formation in a bradykinin-dependent manner. As a mechanistic basis, we found that a neutrophil-derived heparin-binding protein (HBP/azurocidin) displaced the bradykinin precursor high-molecular-weight kininogen from endothelial cells, thereby enabling proteolytic processing of kininogen into bradykinin by neutrophil and plasma proteases. These data provide novel insight into the signaling pathway by which neutrophils open up the endothelial barrier and identify the kallikrein-kinin system as a target for therapeutic interventions in acute inflammatory reactions.-Kenne, E., Rasmuson, J., Renné, T., Vieira, M. L., Müller-Esterl, W., Herwald, H., Lindbom, L. Neutrophils engage the kallikrein-kinin system to open up the endothelial barrier in acute inflammation.
  •  
4.
  • Persson, B. P., et al. (författare)
  • Heparin-binding protein (HBP/CAP37) - a link to endothelin-1 in endotoxemia-induced pulmonary oedema?
  • 2014
  • Ingår i: Acta Anaesthesiologica Scandinavica. - : Wiley. - 0001-5172 .- 1399-6576. ; 58:5, s. 549-559
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundVascular leakage and oedema formation are key components in sepsis. In septic patients, plasma levels of the vasoconstrictive and pro-inflammatory peptide endothelin-1 (ET-1) correlate with mortality. During sepsis, neutrophils release heparin-binding protein (HBP) known to increase vascular permeability and to be a promising biomarker of human sepsis. As disruption of ET-signalling in endotoxemia attenuates formation of oedema, we hypothesized that this effect could be related to decreased levels of HBP. To investigate this, we studied the effects of ET-receptor antagonism on plasma HBP and oedema formation in a porcine model of sepsis. In addition, to further characterize a potential endothelin/HBP interaction, we investigated the effects of graded ET-receptor agonist infusions. MethodsSixteen anesthetized pigs were subjected to 5h of endotoxemia and were randomized to receive either the ET-receptor antagonist tezosentan or vehicle after 2h. Haemodynamics, gas-exchange and lung water were monitored. In separate experiments, plasma HBP was measured in eight non-endotoxemic animals exposed to graded infusion of ET-1 or sarafotoxin 6c. ResultsEndotoxemia increased plasma ET-1, plasma HBP, and extravascular lung water. Tezosentan-treatment markedly attenuated plasma HBP and extravascular lung water, and these parameters correlated significantly. Tezosentan decreased pulmonary vascular resistance and increased respiratory compliance. In non-endotoxemic pigs graded ET-1 and sarafotoxin 6c infusions caused a dose-dependent increase in plasma HBP. ConclusionsET-receptor antagonism reduces porcine endotoxin-induced pulmonary oedema and plasma levels of the oedema-promoting protein HBP. Moreover, direct ET-receptor stimulation distinctively increases plasma HBP. Together, these results suggest a novel mechanism by which ET-1 contributes to formation of oedema during experimental sepsis.
  •  
5.
  • Persson, Kristin, et al. (författare)
  • Severe lung lesions caused by Salmonella are prevented by inhibition of the contact system
  • 2000
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 192:10, s. 1415-1424
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular damage induced by trauma, inflammation, or infection results in an alteration of the endothelium from a nonactivated to a procoagulant, vasoconstrictive, and proinflammatory state, and can lead to life-threatening complications. Here we report that activation of the contact system by Salmonella leads to massive infiltration of red blood cells and fibrin deposition in the lungs of infected rats. These pulmonary lesions were prevented when the infected animals were treated with H-D-Pro-Phe-Arg-chloromethylketone, an inhibitor of coagulation factor XII and plasma kallikrein, suggesting that inhibition of contact system activation could be used therapeutically in severe infectious disease.
  •  
6.
  • Soehnlein, O., et al. (författare)
  • Neutrophil degranulation mediates severe lung damage triggered by streptococcal M1 protein
  • 2008
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 32:2, s. 405-412
  • Tidskriftsartikel (refereegranskat)abstract
    • Streptococcus pyogenes of the M1 serotype can cause streptococcal toxic shock syndrome commonly associated with acute lung injury. The aim of the present study was to investigate the role of neutrophils and their secretion products in M1 protein-induced lung damage. The degranulation of neutrophills by M1 protein was studied in whole blood using marker analysis for individual granule subsets. In mice, M1 protein was injected intravenously and the lung damage was assessed by histology, electron microscopy, cell count in bronchoalveolar lavage fluid and analysis of lung vascular permeability. Comparisons were made in mice with intact white blood count, neutropenic mice and neutropenic mice injected with the secretion of activated neutrophils. In whole blood, M1 protein forms complexes with fibrinogen that bind to beta(2)-integrins on the neutrophil surface, resulting in degranulation of all four subsets of neutrophil granules. Intravenous injection of M1 protein into mice induced neutrophil accumulation in the lung, increase in vascular permeability and acute lung damage. Depletion of neutrophils from the circulation completely abrogated lung injury and vascular leakage. Interestingly, the lung damage was restored by injecting neutrophil secretion. The present data suggest that neutrophil granule proteins are directly responsible for lung damage induced by the streptococcal M1 protein.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy