SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindeman Jan H.) "

Sökning: WFRF:(Lindeman Jan H.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lawrenson, Kate, et al. (författare)
  • Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
  •  
2.
  • Gabel, Gabor, et al. (författare)
  • Parallel Murine and Human Aortic Wall Genomics Reveals Metabolic Reprogramming as Key Driver of Abdominal Aortic Aneurysm Progression
  • 2021
  • Ingår i: Journal of the American Heart Association. - : John Wiley & Sons. - 2047-9980 .- 2047-9980. ; 10:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: While numerous interventions effectively interfered with abdominal aortic aneurysm (AAA) formation/progression in preclinical models, none of the successes translated into clinical success. Hence, a systematic exploration of parallel and divergent processes in clinical AAA disease and its 2 primary models (the porcine pancreatic elastase and angiotensin-II infusion [AngII] murine model) was performed to identify mechanisms relevant for aneurysm disease.Methods and Results: This study combines Movat staining and pathway analysis for histological and genomic comparisons between clinical disease and its models. The impact of a notable genomic signal for metabolic reprogramming was tested in a rescue trial (AngII model) evaluating the impact of 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15)-mediated interference with main glycolytic switch PFKFB3. Histological evaluation characterized the AngII model as a dissection model that is accompanied by adventitial fibrosis. The porcine pancreatic elastase model showed a transient inflammatory response and aortic dilatation, followed by stabilization and fibrosis. Normalization of the genomic responses at day 14 confirmed the self-limiting nature of the porcine pancreatic elastase model. Clear parallel genomic responses with activated adaptive immune responses, and particularly strong signals for metabolic switching were observed in human AAA and the AngII model. Rescue intervention with the glycolysis inhibitor PFK15 in the AngII model showed that interference with the glycolytic switching quenches aneurysm formation.Conclusions: Despite clear morphological contrasts, remarkable genomic parallels exist for clinical AAA disease and the AngII model. The metabolic response appears causatively involved in AAA progression and provides a novel therapeutic target. The clear transient genomic response classifies the porcine pancreatic elastase model as a disease initiation model.
  •  
3.
  • Lindeman, Birgitte, et al. (författare)
  • Does the food processing contaminant acrylamide cause developmental neurotoxicity? A review and identification of knowledge gaps
  • 2021
  • Ingår i: Reproductive Toxicology. - : Elsevier BV. - 0890-6238 .- 1873-1708. ; 101, s. 93-114
  • Forskningsöversikt (refereegranskat)abstract
    • There is a worldwide concern on adverse health effects of dietary exposure to acrylamide (AA) due to its presence in commonly consumed foods. AA is formed when carbohydrate rich foods containing asparagine and reducing sugars are prepared at high temperatures and low moisture conditions. Upon oral intake, AA is rapidly absorbed and distributed to all organs. AA is a known human neurotoxicant that can reach the developing foetus via placental transfer and breast milk. Although adverse neurodevelopmental effects have been observed after prenatal AA exposure in rodents, adverse effects of AA on the developing brain has so far not been studied in humans. However, epidemiological studies indicate that gestational exposure to AA impair foetal growth and AA exposure has been associated with reduced head circumference of the neonate. Thus, there is an urgent need for further research to elucidate whether pre- and perinatal AA exposure in humans might impair neurodevelopment and adversely affect neuronal function postnatally. Here, we review the literature with emphasis on the identification of critical knowledge gaps in relation to neurodevelopmental toxicity of AA and its mode of action and we suggest research strategies to close these gaps to better protect the unborn child.
  •  
4.
  • Matthews, Evan O., et al. (författare)
  • Athero-occlusive Disease Appears to be Associated with Slower Abdominal Aortic Aneurysm Growth : An Exploratory Analysis of the TEDY Trial
  • 2022
  • Ingår i: European Journal of Vascular and Endovascular Surgery. - : Elsevier BV. - 1078-5884 .- 1532-2165. ; 63:4, s. 632-640
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The role of atherosclerosis in abdominal aortic aneurysm (AAA) pathogenesis is controversial. The aim of this study was to compare AAA growth in patients who did and did not have concurrent athero-occlusive disease (AOD). Methods: Patients with an AAA measuring 35 - 49 mm in maximum diameter were recruited as part of the TElmisartan in the management of abdominal aortic aneurysm (TEDY) trial. TEDY participants who had infrarenal aortic volume and orthogonal diameter assessed by computed tomography at entry and at least one other time point during the trial (12 and/or 24 months) were included. AOD was defined by prior diagnoses of coronary heart disease, stroke, or peripheral arterial disease or an ankle brachial pressure index < 0.90. The increase in AAA volume and diameter from entry for participants who did and did not have AOD was assessed using linear mixed effects models; 131 of the 210 participants recruited to TEDY were included. Results: In an unadjusted analysis, the mean (95% confidence interval) annual increases in AAA volume and diameter for participants with AOD were 3.26 (0.82 - 5.70) cm(3) and 0.70 (0.19 - 1.22) mm slower than those without AOD, p = .008 and.007 respectively. The association between AOD and significantly slower AAA growth was maintained after adjusting for risk factors and medications, significantly unequally distributed between participants with and without an AOD diagnosis. Conclusion: In an exploratory analysis of a selective cohort from the TEDY trial, AOD was associated with slower AAA growth. Validation of these findings in other cohorts is needed.
  •  
5.
  • Rykaczewska, Urszula, et al. (författare)
  • PCSK6 Is a Key Protease in the Control of Smooth Muscle Cell Function in Vascular Remodeling
  • 2020
  • Ingår i: Circulation Research. - : LIPPINCOTT WILLIAMS & WILKINS. - 0009-7330 .- 1524-4571. ; 126:5, s. 571-585
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: PCSKs (Proprotein convertase subtilisins/kexins) are a protease family with unknown functions in vasculature. Previously, we demonstrated PCSK6 upregulation in human atherosclerotic plaques associated with smooth muscle cells (SMCs), inflammation, extracellular matrix remodeling, and mitogens. Objective: Here, we applied a systems biology approach to gain deeper insights into the PCSK6 role in normal and diseased vessel wall. Methods and Results: Genetic analyses revealed association of intronic PCSK6 variant rs1531817 with maximum internal carotid intima-media thickness progression in high-cardiovascular risk subjects. This variant was linked with PCSK6 mRNA expression in healthy aortas and plaques but also with overall plaque SMA+ cell content and pericyte fraction. Increased PCSK6 expression was found in several independent human cohorts comparing atherosclerotic lesions versus healthy arteries, using transcriptomic and proteomic datasets. By immunohistochemistry, PCSK6 was localized to fibrous cap SMA+ cells and neovessels in plaques. In human, rat, and mouse intimal hyperplasia, PCSK6 was expressed by proliferating SMA+ cells and upregulated after 5 days in rat carotid balloon injury model, with positive correlation to PDGFB (platelet-derived growth factor subunit B) and MMP (matrix metalloprotease) 2/MMP14. Here, PCSK6 was shown to colocalize and cointeract with MMP2/MMP14 by in situ proximity ligation assay. Microarrays of carotid arteries from Pcsk6(-/-) versus control mice revealed suppression of contractile SMC markers, extracellular matrix remodeling enzymes, and cytokines/receptors. Pcsk6(-/-) mice showed reduced intimal hyperplasia response upon carotid ligation in vivo, accompanied by decreased MMP14 activation and impaired SMC outgrowth from aortic rings ex vivo. PCSK6 silencing in human SMCs in vitro leads to downregulation of contractile markers and increase in MMP2 expression. Conversely, PCSK6 overexpression increased PDGFBB (platelet-derived growth factor BB)-induced cell proliferation and particularly migration. Conclusions: PCSK6 is a novel protease that induces SMC migration in response to PDGFB, mechanistically via modulation of contractile markers and MMP14 activation. This study establishes PCSK6 as a key regulator of SMC function in vascular remodeling.
  •  
6.
  • Röhl, Samuel, et al. (författare)
  • Transcriptomic profiling of experimental arterial injury reveals new mechanisms and temporal dynamics in vascular healing response
  • 2020
  • Ingår i: JVS-Vascular Science. - : Elsevier BV. - 2666-3503. ; 315, s. E14-E14
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Endovascular interventions cause arterial injury and induce a healing response to restore vessel wall homeostasis. Complications of defective or excessive healing are common and result in increased morbidity and repeated interventions. Experimental models of intimal hyperplasia are vital for understanding the vascular healing mechanisms and resolving the clinical problems of restenosis, vein graft stenosis, and dialysis access failure. Our aim was to systematically investigate the transcriptional, histologic, and systemic reaction to vascular injury during a prolonged time. Methods: Balloon injury of the left common carotid artery was performed in male rats. Animals (n = 69) were euthanized before or after injury, either directly or after 2 hours, 20 hours, 2 days, 5 days, 2 weeks, 6 weeks, and 12 weeks. Both injured and contralateral arteries were subjected to microarray profiling, followed by bioinformatic exploration, histologic characterization of the biopsy specimens, and plasma lipid analyses. Results: Immune activation and coagulation were key mechanisms in the early response, followed by cytokine release, tissue remodeling, and smooth muscle cell modulation several days after injury, with reacquisition of contractile features in later phases. Novel pathways related to clonal expansion, inflammatory transformation, and chondro-osteogenic differentiation were identified and immunolocalized to neointimal smooth muscle cells. Analysis of uninjured arteries revealed a systemic component of the reaction after local injury, underlined by altered endothelial signaling, changes in overall tissue bioenergy metabolism, and plasma high-density lipoprotein levels. Conclusions: We demonstrate that vascular injury induces dynamic transcriptional landscape and metabolic changes identifiable as early, intermediate, and late response phases, reaching homeostasis after several weeks. This study provides a temporal “roadmap” of vascular healing as a publicly available resource for the research community.
  •  
7.
  • Wågsäter, Dick, et al. (författare)
  • Impaired collagen biosynthesis and cross-linking in aorta of patients with bicuspid aortic valve
  • 2013
  • Ingår i: Journal of the American Heart Association. - : Wiley-Blackwell. - 2047-9980 .- 2047-9980. ; 2:1, s. e000034-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Patients with bicuspid aortic valve (BAV) have an increased risk of developing ascending aortic aneurysm. In the present study, collagen homeostasis in nondilated and dilated aorta segments from patients with BAV was studied, with normal and dilated aortas from tricuspid aortic valve (TAV) patients as reference.METHODS AND RESULTS: Ascending aortas from 56 patients were used for biochemical and morphological analyses of collagen. mRNA expression was analyzed in 109 patients. Collagen turnover rates were similar in nondilated and dilated aortas of BAV patients, showing that aneurysmal formation in BAV is, in contrast to TAV, not associated with an increased collagen turnover. However, BAV in general was associated with an increased aortic collagen turnover compared with nondilated aortas of TAV patients. Importantly, the ratio of hydroxylysyl pyridinoline (HP) to lysyl pyridinoline (LP), 2 distinct forms of collagen cross-linking, was lower in dilated aortas from patients with BAV, which suggests that BAV is associated with a defect in the posttranslational collagen modification. This suggests a deficiency at the level of lysyl hydroxylase (PLOD1), which was confirmed by mRNA and protein analyses that showed reduced PLOD1 expression but normal lysyl oxidase expression in dilated aortas from patients with BAV. This suggests that impaired collagen cross-linking in BAV patients may be attributed to changes in the expression and/or activity of PLOD1.CONCLUSIONS: Our results demonstrate an impaired biosynthesis and posttranslational modification of collagen in aortas of patients with BAV, which may explain the increased aortic aneurysm formation in BAV patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy