SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindenberger Ulman) ;pers:(Karalija Nina 1984)"

Sökning: WFRF:(Lindenberger Ulman) > Karalija Nina 1984

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Karalija, Nina, 1984-, et al. (författare)
  • A common polymorphism in the dopamine transporter gene predicts working memory performance and in vivo dopamine integrity in aging
  • 2021
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 245
  • Tidskriftsartikel (refereegranskat)abstract
    • Dopamine (DA) integrity is suggested as a potential cause of individual differences in working memory (WM) performance among older adults. Still, the principal dopaminergic mechanisms giving rise to WM differences remain unspecified. Here, 61 single-nucleotide polymorphisms, located in or adjacent to various dopamine-related genes, were assessed for their links to WM performance in a sample of 1313 adults aged 61–80 years from the Berlin Aging Study II. Least Absolute Shrinkage and Selection Operator (LASSO) regression was conducted to estimate associations between polymorphisms and WM. Rs40184 in the DA transporter gene, SLC6A3, showed allelic group differences in WM, with T-carriers performing better than C homozygotes (p<0.01). This finding was replicated in an independent sample from the Cognition, Brain, and Aging study (COBRA; baseline: n = 181, ages: 64–68 years; 5-year follow up: n = 129). In COBRA, in vivo DA integrity was measured with 11C-raclopride and positron emission tomography. Notably, WM as well as in vivo DA integrity was higher for rs40184 T-carriers at baseline (p<0.05 for WM and caudate and hippocampal D2-receptor availability) and at the 5-year follow-up (p<0.05 for WM and hippocampal D2 availability). Our findings indicate that individual differences in DA transporter function contribute to differences in WM performance in old age, presumably by regulating DA availability.
  •  
2.
  • Karalija, Nina, 1984-, et al. (författare)
  • C957T-mediated Variation in Ligand Affinity Affects the Association between C-11-raclopride Binding Potential and Cognition
  • 2019
  • Ingår i: Journal of cognitive neuroscience. - : MIT Press. - 0898-929X .- 1530-8898. ; 31:2, s. 314-325
  • Tidskriftsartikel (refereegranskat)abstract
    • The dopamine (DA) system plays an important role in cognition. Accordingly, normal variation in DA genes has been found to predict individual differences in cognitive performance. However, little is known of the impact of genetic differences on the link between empirical indicators of the DA system and cognition in humans. The present work used PET with C-11-raclopride to assess DA D2-receptor binding potential (BP) and links to episodic memory, working memory, and perceptual speed in 179 healthy adults aged 64-68 years. Previously, the T-allele of a DA D2-receptor single-nucleotide polymorphism, C957T, was associated with increased apparent affinity of C-11-raclopride, giving rise to higher BP values despite similar receptor density values between allelic groups. Consequently, we hypothesized that C-11-raclopride BP measures inflated by affinity rather than D2-receptor density in T-allele carriers would not be predictive of DA integrity and therefore prevent finding an association between C-11-raclopride BP and cognitive performance. In accordance with previous findings, we show that C-11-raclopride BP was increased in T-homozygotes. Importantly, C-11-raclopride BP was only associated with cognitive performance in groups with low or average ligand affinity (C-allele carriers of C957T, n = 124), but not in the high-affinity group (T-homozygotes, n = 55). The strongest C-11-raclopride BP-cognition associations and the highest level of performance were found in C-homozygotes. These findings show that genetic differences modulate the link between BP and cognition and thus have important implications for the interpretation of DA assessments with PET and C-11-raclopride in multiple disciplines ranging from cognitive neuroscience to psychiatry and neurology.
  •  
3.
  • Karalija, Nina, 1984-, et al. (författare)
  • Cardiovascular factors are related to dopamine integrity and cognition in aging
  • 2019
  • Ingår i: Annals of Clinical and Translational Neurology. - : Wiley-Blackwell. - 2328-9503. ; 6:11, s. 2291-2303
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The aging brain undergoes several changes, including reduced vascular, structural, and dopamine (DA) system integrity. Such brain changes have been associated with age‐related cognitive deficits. However, their relative importance, interrelations, and links to risk factors remain elusive.Methods: The present work used magnetic resonance imaging and positron emission tomography with 11C‐raclopride to jointly examine vascular parameters (white‐matter lesions and perfusion), DA D2‐receptor availability, brain structure, and cognitive performance in healthy older adults (n = 181, age: 64–68 years) from the Cognition, Brain, and Aging (COBRA) study.Results: Covariance was found among several brain indicators, where top predictors of cognitive performance included caudate and hippocampal integrity (D2DR availability and volumes), and cortical blood flow and regional volumes. White‐matter lesion burden was negatively correlated with caudate DA D2‐receptor availability and white‐matter microstructure. Compared to individuals with smaller lesions, individuals with confluent lesions (exceeding 20 mm in diameter) had reductions in cortical and hippocampal perfusion, striatal and hippocampal D2‐receptor availability, white‐matter microstructure, and reduced performance on tests of episodic memory, sequence learning, and processing speed. Higher cardiovascular risk as assessed by treatment for hypertension, systolic blood pressure, overweight, and smoking was associated with lower frontal cortical perfusion, lower putaminal D2DR availability, smaller grey‐matter volumes, a larger number of white‐matter lesions, and lower episodic memory performance.Interpretation: Taken together, these findings suggest that reduced cardiovascular health is associated with poorer status for brain variables that are central to age‐sensitive cognitive functions, with emphasis on DA integrity.
  •  
4.
  • Karalija, Nina, 1984-, et al. (författare)
  • Longitudinal Dopamine D2 Receptor Changes and Cerebrovascular Health in Aging
  • 2022
  • Ingår i: Neurology. - 1526-632X .- 0028-3878. ; 99, s. e1278-e1289
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND OBJECTIVES: Cross-sectional studies suggest marked dopamine (DA) decline in aging, but longitudinal evidence is lacking. The aim of this study was to estimate within-person decline rates for DA D2-like receptors (DRD2) in aging and examine factors that may contribute to individual differences in DRD2 decline rates. METHODS: We investigated 5-year within-person changes in DRD2 availability in a sample of older adults. At both occasions, PET with 11C-raclopride and MRI were used to measure DRD2 availability in conjunction with structural and vascular brain integrity. RESULTS: Longitudinal analyses of the sample (baseline: n = 181, ages: 64-68 years, 100 men and 81 women; 5-year follow-up: n = 129, 69 men and 60 women) revealed aging-related striatal and extrastriatal DRD2 decline, along with marked individual differences in rates of change. Notably, the magnitude of striatal DRD2 decline was ∼50% of past cross-sectional estimates, suggesting that the DRD2 decline rate has been overestimated in past cross-sectional studies. Significant DRD2 reductions were also observed in select extrastriatal regions, including hippocampus, orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC). Distinct profiles of correlated DRD2 changes were found across several associative regions (ACC, dorsal striatum, and hippocampus) and in the reward circuit (nucleus accumbens and OFC). DRD2 losses in associative regions were associated with white matter lesion progression, whereas DRD2 losses in limbic regions were related to reduced cortical perfusion. DISCUSSION: These findings provide the first longitudinal evidence for individual and region-specific differences of DRD2 decline in older age and support the hypothesis that cerebrovascular factors are linked to age-related dopaminergic decline.
  •  
5.
  • Karalija, Nina, 1984-, et al. (författare)
  • Longitudinal support for the correlative triad among aging, dopamine D2-like receptor loss, and memory decline
  • 2024
  • Ingår i: NEUROBIOLOGY OF AGING. - 0197-4580 .- 1558-1497. ; 136, s. 125-132
  • Tidskriftsartikel (refereegranskat)abstract
    • Dopamine decline is suggested to underlie aging -related cognitive decline, but longitudinal examinations of this link are currently missing. We analyzed 5 -year longitudinal data for a sample of healthy, older adults (baseline: n = 181, age: 64-68 years; 5 -year follow-up: n = 129) who underwent positron emission tomography with 11C- raclopride to assess dopamine D2 -like receptor (DRD2) availability, magnetic resonance imaging to evaluate structural brain measures, and cognitive tests. Health, lifestyle, and genetic data were also collected. A datadriven approach (k -means cluster analysis) identified groups that differed maximally in DRD2 decline rates in age -sensitive brain regions. One group (n = 47) had DRD2 decline exclusively in the caudate and no cognitive decline. A second group (n = 72) had more wide -ranged DRD2 decline in putamen and nucleus accumbens and also in extrastriatal regions. The latter group showed significant 5 -year working memory decline that correlated with putamen DRD2 decline, along with higher dementia and cardiovascular risk and a faster biological pace of aging. Taken together, for individuals with more extensive DRD2 decline, dopamine decline is associated with memory decline in aging.
  •  
6.
  • Karalija, Nina, 1984-, et al. (författare)
  • Sex differences in dopamine integrity and brain structure among healthy older adults : Relationships to episodic memory
  • 2021
  • Ingår i: Neurobiology of Aging. - : Elsevier. - 0197-4580 .- 1558-1497. ; 105, s. 272-279
  • Tidskriftsartikel (refereegranskat)abstract
    • Normal brain aging is a multidimensional process that includes deterioration in various brain structures and functions, with large heterogeneity in patterns and rates of decline. Sex differences have been reported for various cognitive and brain parameters, but little is known in relation to neuromodulatory aspects of brain aging. We examined sex differences in dopamine D2-receptor (D2DR) availability in relation to episodic memory, but also, grey-matter volumes, white-matter lesions, and cerebral perfusion in healthy older adults (n = 181, age: 64-68 years) from the Cognition, Brain, and Aging study. Women had higher D2DR availability in midbrain and left caudate and putamen, as well as superior episodic memory performance. Controlling for left caudate D2DR availability attenuated sex differences in memory performance. In men, lower left caudate D2DR levels were associated with lower cortical perfusion and higher burden of white-matter lesions, as well as with episodic memory performance. However, sex was not a significant moderator of the reported links to D2DR levels. Our findings suggest that sex differences in multiple associations among DA receptor availability, vascular factors, and structural connectivity contribute to sex differences in episodic memory. Future longitudinal studies need to corroborate these patterns by lead-lag associations. This manuscript is part of the Special Issue entitled 'Cognitive Neuroscience of Healthy and Pathological Aging' edited by Drs. M. N. Rajah, S. Belleville, and R. Cabeza. 
  •  
7.
  • Korkki, Saana M., et al. (författare)
  • Fronto-striatal dopamine D2 receptor availability is associated with cognitive variability in older individuals with low dopamine integrity
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Within-person, moment-to-moment, variability in behavior increases with advancing adult age, potentially reflecting the influence of reduced structural and neurochemical brain integrity, especially that of the dopaminergic system. We examined the role of dopamine D2 receptor (D2DR) availability, grey-, and white-matter integrity, for between-person differences in cognitive variability in a large sample of healthy older adults (n = 181; 64–68 years) from the Cognition, Brain, and Aging (COBRA) study. Intra-individual variability (IIV) in cognition was measured as across-trial variability in participants’ response times for tasks assessing perceptual speed and working memory, as well as for a control task of motor speed. Across the whole sample, no associations of D2DR availability, or grey- and white-matter integrity, to IIV were observed. However, within-person variability in cognition was increased in two subgroups of individuals displaying low mean-level cognitive performance, one of which was characterized by low subcortical and cortical D2DR availability. In this latter group, fronto-striatal D2DR availability correlated negatively with within-person variability in cognition. This finding suggests that the influence of D2DR availability on cognitive variability may be more easily disclosed among individuals with low dopamine-system integrity, highlighting the benefits of large-scale studies for delineating heterogeneity in brain-behavior associations in older age.
  •  
8.
  • Lövdén, Martin, et al. (författare)
  • Latent-Profile Analysis Reveals Behavioral and Brain Correlates of Dopamine-Cognition Associations
  • 2018
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 28:11, s. 3894-3907
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence suggests that associations between the neurotransmitter dopamine and cognition are nonmonotonic and open to modulation by various other factors. The functional implications of a given level of dopamine may therefore differ from person to person. By applying latent-profile analysis to a large (n = 181) sample of adults aged 64-68 years, we probabilistically identified 3 subgroups that explain the multivariate associations between dopamine D2/3R availability (probed with C-11-raclopride-PET, in cortical, striatal, and hippocampal regions) and cognitive performance (episodic memory, working memory, and perceptual speed). Generally, greater receptor availability was associated with better cognitive performance. However, we discovered a subgroup of individuals for which high availability, particularly in striatum, was associated with poor performance, especially for working memory. Relative to the rest of the sample, this subgroup also had lower education, higher body-mass index, and lower resting-state connectivity between caudate nucleus and dorsolateral prefrontal cortex. We conclude that a smaller subset of individuals induces a multivariate non-linear association between dopamine D2/3R availability and cognitive performance in this group of older adults, and discuss potential reasons for these differences that await further empirical scrutiny.
  •  
9.
  • Nyberg, Lars, 1966-, et al. (författare)
  • Longitudinal stability in working memory and frontal activity in relation to general brain maintenance
  • 2022
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cognitive functions are well-preserved for some older individuals, but the underlying brain mechanisms remain disputed. Here, 5-year longitudinal 3-back in-scanner and offline data classified individuals in a healthy older sample (baseline age = 64–68 years) into having stable or declining working-memory (WM). Consistent with a vital role of the prefrontal cortex (PFC), WM stability or decline was related to maintained or reduced longitudinal PFC functional responses. Subsequent analyses of imaging markers of general brain maintenance revealed higher levels in the stable WM group on measures of neurotransmission and vascular health. Also, categorical and continuous analyses showed that rate of WM decline was related to global (ventricles) and local (hippocampus) measures of neuronal integrity. Thus, our findings support a role of the PFC as well as general brain maintenance in explaining heterogeneity in longitudinal WM trajectories in aging.
  •  
10.
  • Papenberg, Goran, et al. (författare)
  • Balance between Transmitter Availability and Dopamine D2 Receptors in Prefrontal Cortex Influences Memory Functioning
  • 2020
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 30:3, s. 989-1000
  • Tidskriftsartikel (refereegranskat)abstract
    • Insufficient or excessive dopaminergic tone impairs cognitive performance. We examine whether the balance between transmitter availability and dopamine (DA) D2 receptors (D2DRs) is important for successful memory performance in a large sample of adults (n= 175, 64-68 years). The Catechol-O-Methyltransferase polymorphism served as genetic proxy for endogenous prefrontal DA availability, and D2DRs in dorsolateral prefrontal cortex (dlPFC) were measured with [C-11]raclopride-PET. Individuals for whom D2DR status matched DA availability showed higher levels of episodic and working-memory performance than individuals with insufficient or excessive DA availability relative to the number of receptors. A similar pattern restricted to episodic memory was observed for D2DRs in caudate. Functional magnetic resonance imaging data acquired during working-memory performance confirmed the importance of a balanced DA system for load-dependent brain activity in dlPFC. Our data suggest that the inverted-U-shaped function relating DA signaling to cognition is modulated by a dynamic association between DA availability and receptor status.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy