SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Linder Stig) ;pers:(Gustafsson Mats)"

Sökning: WFRF:(Linder Stig) > Gustafsson Mats

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aftab, Obaid, 1984-, et al. (författare)
  • Label-free detection and dynamic monitoring of drug-induced intracellular vesicle formation enabled using a 2-dimensional matched filter
  • 2014
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8627 .- 1554-8635. ; 10:1, s. 57-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of vesicle formation and degradation is a central issue in autophagy research and microscopy imaging is revolutionizing the study of such dynamic events inside living cells. A limiting factor is the need for labeling techniques that are labor intensive, expensive, and not always completely reliable. To enable label-free analyses we introduced a generic computational algorithm, the label-free vesicle detector (LFVD), which relies on a matched filter designed to identify circular vesicles within cells using only phase-contrast microscopy images. First, the usefulness of the LFVD is illustrated by presenting successful detections of autophagy modulating drugs found by analyzing the human colorectal carcinoma cell line HCT116 exposed to each substance among 1266 pharmacologically active compounds. Some top hits were characterized with respect to their activity as autophagy modulators using independent in vitro labeling of acidic organelles, detection of LC3-II protein, and analysis of the autophagic flux. Selected detection results for 2 additional cell lines (DLD1 and RKO) demonstrate the generality of the method. In a second experiment, label-free monitoring of dose-dependent vesicle formation kinetics is demonstrated by recorded detection of vesicles over time at different drug concentrations. In conclusion, label-free detection and dynamic monitoring of vesicle formation during autophagy is enabled using the LFVD approach introduced.
  •  
2.
  • Fryknäs, Mårten, et al. (författare)
  • Screening for phenotype selective activity in multidrug resistant cells identifies a novel tubulin active agent insensitive to common forms of cancer drug resistance
  • 2013
  • Ingår i: BMC Cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 13, s. 374-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Drug resistance is a common cause of treatment failure in cancer patients and encompasses a multitude of different mechanisms. The aim of the present study was to identify drugs effective on multidrug resistant cells. Methods: The RPMI 8226 myeloma cell line and its multidrug resistant subline 8226/Dox40 was screened for cytotoxicity in response to 3,000 chemically diverse compounds using a fluorometric cytotoxicity assay (FMCA). Follow-up profiling was subsequently performed using various cellular and biochemical assays. Results: One compound, designated VLX40, demonstrated a higher activity against 8226/Dox40 cells compared to its parental counterpart. VLX40 induced delayed cell death with apoptotic features. Mechanistic exploration was performed using gene expression analysis of drug exposed tumor cells to generate a drug-specific signature. Strong connections to tubulin inhibitors and microtubule cytoskeleton were retrieved. The mechanistic hypothesis of VLX40 acting as a tubulin inhibitor was confirmed by direct measurements of interaction with tubulin polymerization using a biochemical assay and supported by demonstration of G2/M cell cycle arrest. When tested against a broad panel of primary cultures of patient tumor cells (PCPTC) representing different forms of leukemia and solid tumors, VLX40 displayed high activity against both myeloid and lymphoid leukemias in contrast to the reference compound vincristine to which myeloid blast cells are often insensitive. Significant in vivo activity was confirmed in myeloid U-937 cells implanted subcutaneously in mice using the hollow fiber model. Conclusions: The results indicate that VLX40 may be a useful prototype for development of novel tubulin active agents that are insensitive to common mechanisms of cancer drug resistance.
  •  
3.
  •  
4.
  • Senkowski, Wojciech, et al. (författare)
  • Three-Dimensional Cell Culture-Based Screening Identifies the Anthelmintic Drug Nitazoxanide as a Candidate for Treatment of Colorectal Cancer
  • 2015
  • Ingår i: Molecular Cancer Therapeutics. - : American Association for Cancer Research. - 1535-7163 .- 1538-8514. ; 14:6, s. 1504-1516
  • Tidskriftsartikel (refereegranskat)abstract
    • Because dormant cancer cells in hypoxic and nutrient-deprived regions of solid tumors provide a major obstacle to treatment, compounds targeting those cells might have clinical benefits. Here, we describe a high-throughput drug screening approach, using glucose-deprived multicellular tumor spheroids (MCTS) with inner hypoxia, to identify compounds that specifically target this cell population. We used a concept of drug repositioning-using known molecules for new indications. This is a promising strategy to identify molecules for rapid clinical advancement. By screening 1,600 compounds with documented clinical history, we aimed to identify candidates with unforeseen potential for repositioning as anticancer drugs. Our screen identified five molecules with pronounced MCTS-selective activity: nitazoxanide, niclosamide, closantel, pyrvinium pamoate, and salinomycin. Herein, we show that all five compounds inhibit mitochondrial respiration. This suggests that cancer cells in low glucose concentrations depend on oxidative phosphorylation rather than solely glycolysis. Importantly, continuous exposure to the compounds was required to achieve effective treatment. Nitazoxanide, an FDA-approved antiprotozoal drug with excellent pharmacokinetic and safety profile, is the only molecule among the screening hits that reaches high plasma concentrations persisting for up to a few hours after single oral dose. Nitazoxanide activated the AMPK pathway and downregulated c-Myc, mTOR, and Wnt signaling at clinically achievable concentrations. Nitazoxanide combined with the cytotoxic drug irinotecan showed anticancer activity in vivo. We here report that the FDA-approved anthelmintic drug nitazoxanide could be a potential candidate for advancement into cancer clinical trials. (C) 2015 AACR.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy