SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lindstedt Sven) ;lar1:(lu)"

Sökning: WFRF:(Lindstedt Sven) > Lunds universitet

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hirdman, Gabriel, et al. (författare)
  • Proteomic characteristics and diagnostic potential of exhaled breath particles in patients with COVID-19
  • 2023
  • Ingår i: Clinical Proteomics. - : Springer Science and Business Media LLC. - 1542-6416 .- 1559-0275. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: SARS-CoV-2 has been shown to predominantly infect the airways and the respiratory tract and too often have an unpredictable and different pathologic pattern compared to other respiratory diseases. Current clinical diagnostical tools in pulmonary medicine expose patients to harmful radiation, are too unspecific or even invasive. Proteomic analysis of exhaled breath particles (EBPs) in contrast, are non-invasive, sample directly from the pathological source and presents as a novel explorative and diagnostical tool.METHODS: Patients with PCR-verified COVID-19 infection (COV-POS, n = 20), and patients with respiratory symptoms but with > 2 negative polymerase chain reaction (PCR) tests (COV-NEG, n = 16) and healthy controls (HCO, n = 12) were prospectively recruited. EBPs were collected using a "particles in exhaled air" (PExA 2.0) device. Particle per exhaled volume (PEV) and size distribution profiles were compared. Proteins were analyzed using liquid chromatography-mass spectrometry. A random forest machine learning classification model was then trained and validated on EBP data achieving an accuracy of 0.92.RESULTS: Significant increases in PEV and changes in size distribution profiles of EBPs was seen in COV-POS and COV-NEG compared to healthy controls. We achieved a deep proteome profiling of EBP across the three groups with proteins involved in immune activation, acute phase response, cell adhesion, blood coagulation, and known components of the respiratory tract lining fluid, among others. We demonstrated promising results for the use of an integrated EBP biomarker panel together with particle concentration for diagnosis of COVID-19 as well as a robust method for protein identification in EBPs.CONCLUSION: Our results demonstrate the promising potential for the use of EBP fingerprints in biomarker discovery and for diagnosing pulmonary diseases, rapidly and non-invasively with minimal patient discomfort.
  •  
2.
  • Niroomand, Anna, et al. (författare)
  • Proteomic Analysis of Primary Graft Dysfunction in Porcine Lung Transplantation Reveals Alveolar-Capillary Barrier Changes Underlying the High Particle Flow Rate in Exhaled Breath
  • 2024
  • Ingår i: Transplant International. - 0934-0874. ; 37
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary graft dysfunction (PGD) remains a challenge for lung transplantation (LTx) recipients as a leading cause of poor early outcomes. New methods are needed for more detailed monitoring and understanding of the pathophysiology of PGD. The measurement of particle flow rate (PFR) in exhaled breath is a novel tool to monitor and understand the disease at the proteomic level. In total, 22 recipient pigs underwent orthotopic left LTx and were evaluated for PGD on postoperative day 3. Exhaled breath particles (EBPs) were evaluated by mass spectrometry and the proteome was compared to tissue biopsies and bronchoalveolar lavage fluid (BALF). Findings were confirmed in EBPs from 11 human transplant recipients. Recipients with PGD had significantly higher PFR [686.4 (449.7–8,824.0) particles per minute (ppm)] compared to recipients without PGD [116.6 (79.7–307.4) ppm, p = 0.0005]. Porcine and human EBP proteins recapitulated proteins found in the BAL, demonstrating its utility instead of more invasive techniques. Furthermore, adherens and tight junction proteins were underexpressed in PGD tissue. Histological and proteomic analysis found significant changes to the alveolar-capillary barrier explaining the high PFR in PGD. Exhaled breath measurement is proposed as a rapid and non-invasive bedside measurement of PGD.
  •  
3.
  • Niroomand, Anna, et al. (författare)
  • Proteomic changes to immune and inflammatory processes underlie lung preservation using ex vivo cytokine adsorption.
  • 2023
  • Ingår i: Frontiers in Cardiovascular Medicine. - 2297-055X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: In recent years, the field of graft preservation has made considerable strides in improving outcomes related to solid organ restoration and regeneration. Ex vivo lung perfusion (EVLP) in line with the related devices and treatments has yielded promising results within preclinical and clinical studies, with the potential to improve graft quality. Its main benefit is to render marginal and declined donor lungs suitable for transplantation, ultimately increasing the donor pool available for transplantation. In addition, using such therapies in machine perfusion could also increase preservation time, facilitating logistical planning. Cytokine adsorption has been demonstrated as a potentially safe and effective therapy when applied to the EVLP circuit and post-transplantation. However, the mechanism by which this therapy improves the donor lung on a molecular basis is not yet fully understood.METHODS: We hypothesized that there were characteristic inflammatory and immunomodulatory differences between the lungs treated with and without cytokine adsorption, reflecting proteomic changes in the gene ontology pathways and across inflammation-related proteins. In this study, we investigate the molecular mechanisms and signaling pathways of how cytokine adsorption impacts lung function when used during EVLP and post-transplantation as hemoperfusion in a porcine model. Lung tissues during EVLP and post-lung transplantation were analyzed for their proteomic profiles using mass spectrometry.RESULTS: We found through gene set enrichment analysis that the inflammatory and immune processes and coagulation pathways were significantly affected by the cytokine treatment after EVLP and transplantation.CONCLUSION: In conclusion, we showed that the molecular mechanisms are using a proteomic approach behind the previously reported effects of cytokine adsorption when compared to the non-treated transplant recipients undergoing EVLP.
  •  
4.
  • Oosterhoff, Dinja, et al. (författare)
  • Intradermal Delivery of TLR Agonists in a Human Explant Skin Model: Preferential Activation of Migratory Dendritic Cells by Polyribosinic-Polyribocytidylic Acid and Peptidoglycans
  • 2013
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 1550-6606 .- 0022-1767. ; 190:7, s. 3338-3345
  • Tidskriftsartikel (refereegranskat)abstract
    • TLR agonists are attractive candidate adjuvants for therapeutic cancer vaccines as they can induce a balanced humoral and T cell-mediated immune response. With a dense network of dendritic cells (DCs) and draining lymphatics, the skin provides an ideal portal for vaccine delivery. Beside direct DC activation, TLR agonists may also induce DC activation through triggering the release of inflammatory mediators by accessory cells in the skin microenvironment. Therefore, a human skin explant model was used to explore the in vivo potential of intradermally delivered TLR agonists to stimulate Langerhans cells and dermal DCs in their natural complex tissue environment. The skin-emigrated DCs were phenotyped and analyzed for T cell stimulatory capacity. We report that, of six tested TLR-agonists, the TLR2 and -3 agonists peptidoglycan (PGN) and polyribosinic-polyribocytidylic acid (Poly I:C) were uniquely able to enhance the T cell-priming ability of skin-emigrated DCs, which, in the case of PGN, was accompanied by Th1 polarization. The enhanced priming capacity of Poly I:C-stimulated DCs was associated with a strong upregulation of appropriate costimulatory molecules, including CD70, whereas that of PGN-stimulated DCs was associated with the release of a broad array of proinflammatory cytokines. Transcriptional profiling further supported the notion that the PGN- and Poly I:C-induced effects were mediated through binding to TLR2/nucleotide-binding oligomerization domain 2 and TLR3/MDA5, respectively. These data warrant further exploration of PGN and Poly I:C, alone or in combination, as DC-targeted adjuvants for intradermal cancer vaccines. The Journal of Immunology, 2013, 190:3338-3345.
  •  
5.
  • Petruk, Ganna, et al. (författare)
  • Targeting Toll-like receptor-driven systemic inflammation by engineering an innate structural fold into drugs
  • 2023
  • Ingår i: Nature Communications. - : Springer. - 2041-1723. ; 14, s. 1-20
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a clinical need for conceptually new treatments that target the excessive activation of inflammatory pathways during systemic infection. Thrombin-derived C-terminal peptides (TCPs) are endogenous anti-infective immunomodulators interfering with CD14-mediated TLR-dependent immune responses. Here we describe the development of a peptide-based compound for systemic use, sHVF18, expressing the evolutionarily conserved innate structural fold of natural TCPs. Using a combination of structure- and in silico-based design, nuclear magnetic resonance spectroscopy, biophysics, mass spectrometry, cellular, and in vivo studies, we here elucidate the structure, CD14 interactions, protease stability, transcriptome profiling, and therapeutic efficacy of sHVF18. The designed peptide displays a conformationally stabilized, protease resistant active innate fold and targets the LPS-binding groove of CD14. In vivo, it shows therapeutic efficacy in experimental models of endotoxin shock in mice and pigs and increases survival in mouse models of systemic polymicrobial infection. The results provide a drug class based on Nature´s own anti-infective principles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy