SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ling Charlotte) ;pers:(Benrick Anna 1979)"

Sökning: WFRF:(Ling Charlotte) > Benrick Anna 1979

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benrick, Anna, 1979, et al. (författare)
  • Electroacupuncture mimics exercise-induced changes in skeletal muscle gene expression in polycystic ovary syndrome women.
  • 2020
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 105:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Autonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture but the mechanisms are largely unknown.To identify the molecular mechanisms underlying electroacupuncture-induced glucose uptake in skeletal muscle in insulin-resistant overweight/obese women with and without polycystic ovary syndrome (PCOS).Participants: In a case-control study, skeletal muscle biopsies were collected from 15 women with PCOS and 14 controls before and after electroacupuncture. Gene expression and methylation was analyzed using Illumina BeadChips arrays.A single bout of electroacupuncture restores metabolic and transcriptional alterations and induces epigenetic changes in skeletal muscle. Transcriptomic analysis revealed 180 unique genes (q<0.05) whose expression was changed by electroacupuncture, with 95% of the changes towards a healthier phenotype. We identified DNA methylation changes at 304 unique sites (q<0.20), and these changes correlated with altered expression of 101 genes (p<0.05). Among the 50 most upregulated genes in response to electroacupuncture, 38% were also upregulated in response to exercise. We identified a subset of genes that were selectively altered by electroacupuncture in women with PCOS. For example, MSX1 and SRNX1 were decreased in muscle tissue of women with PCOS and were increased by electroacupuncture and exercise. siRNA-mediated silencing of these two genes in cultured myotubes decreased glycogen synthesis, supporting a role for these genes in glucose homeostasis.Our findings provide evidence that electroacupuncture normalizes gene expression in skeletal muscle in a manner similar to acute exercise. Electroacupuncture might therefore be a useful way of assisting those who have difficulties performing exercise.
  •  
2.
  • Benrick, Anna, 1979-, et al. (författare)
  • Electroacupuncture mimics exercise-induced changes in skeletal muscle gene expression in women with polycystic ovary syndrome
  • 2020
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : Oxford University Press. - 0021-972X .- 1945-7197. ; 105:6, s. 2027-2041
  • Tidskriftsartikel (refereegranskat)abstract
    • ContextAutonomic nervous system activation mediates the increase in whole-body glucose uptake in response to electroacupuncture but the mechanisms are largely unknown.ObjectiveTo identify the molecular mechanisms underlying electroacupuncture-induced glucose uptake in skeletal muscle in insulin-resistant overweight/obese women with and without polycystic ovary syndrome (PCOS).Design/ParticipantsIn a case-control study, skeletal muscle biopsies were collected from 15 women with PCOS and 14 controls before and after electroacupuncture. Gene expression and methylation was analyzed using Illumina BeadChips arrays.ResultsA single bout of electroacupuncture restores metabolic and transcriptional alterations and induces epigenetic changes in skeletal muscle. Transcriptomic analysis revealed 180 unique genes (q < 0.05) whose expression was changed by electroacupuncture, with 95% of the changes towards a healthier phenotype. We identified DNA methylation changes at 304 unique sites (q < 0.20), and these changes correlated with altered expression of 101 genes (P < 0.05). Among the 50 most upregulated genes in response to electroacupuncture, 38% were also upregulated in response to exercise. We identified a subset of genes that were selectively altered by electroacupuncture in women with PCOS. For example, MSX1 and SRNX1 were decreased in muscle tissue of women with PCOS and were increased by electroacupuncture and exercise. siRNA-mediated silencing of these 2 genes in cultured myotubes decreased glycogen synthesis, supporting a role for these genes in glucose homeostasis.ConclusionOur findings provide evidence that electroacupuncture normalizes gene expression in skeletal muscle in a manner similar to acute exercise. Electroacupuncture might therefore be a useful way of assisting those who have difficulties performing exercise.
  •  
3.
  • Davegårdh, Cajsa, et al. (författare)
  • VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin resistance and lower muscle quality (strength divided by mass) are hallmarks of type 2 diabetes (T2D). Here, we explore whether alterations in muscle stem cells (myoblasts) from individuals with T2D contribute to these phenotypes. We identify VPS39 as an important regulator of myoblast differentiation and muscle glucose uptake, and VPS39 is downregulated in myoblasts and myotubes from individuals with T2D. We discover a pathway connecting VPS39-deficiency in human myoblasts to impaired autophagy, abnormal epigenetic reprogramming, dysregulation of myogenic regulators, and perturbed differentiation. VPS39 knockdown in human myoblasts has profound effects on autophagic flux, insulin signaling, epigenetic enzymes, DNA methylation and expression of myogenic regulators, and gene sets related to the cell cycle, muscle structure and apoptosis. These data mimic what is observed in myoblasts from individuals with T2D. Furthermore, the muscle of Vps39(+/-) mice display reduced glucose uptake and altered expression of genes regulating autophagy, epigenetic programming, and myogenesis. Overall, VPS39-deficiency contributes to impaired muscle differentiation and reduced glucose uptake. VPS39 thereby offers a therapeutic target for T2D. Insulin resistance and lower muscle strength in relation to mass are hallmarks of type 2 diabetes. Here, the authors report alterations in muscle stem cells from individuals with type 2 diabetes that may contribute to these phenotypes through VPS39 mediated effects on autophagy and epigenetics.
  •  
4.
  • Kokosar, Milana, et al. (författare)
  • A Single Bout of Electroacupuncture Remodels Epigenetic and Transcriptional Changes in Adipose Tissue in Polycystic Ovary Syndrome
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A single bout of electroacupuncture results in muscle contractions and increased whole body glucose uptake in women with polycystic ovary syndrome (PCOS). Women with PCOS have transcriptional and epigenetic alterations in the adipose tissue and we hypothesized that electroacupuncture induces epigenetic and transcriptional changes to restore metabolic alterations. Twenty-one women with PCOS received a single bout of electroacupuncture, which increased the whole body glucose uptake. In subcutaneous adipose tissue biopsies, we identified treatment-induced expression changes of 2369 genes (Q < 0.05) and DNA methylation changes of 7055 individual genes (Q = 0.11). The largest increase in expression was observed for FOSB (2405%), and the largest decrease for LOC100128899 (54%). The most enriched pathways included Acute phase response signaling and LXR/RXR activation. The DNA methylation changes ranged from 1-16%, and 407 methylation sites correlated with gene expression. Among genes known to be differentially expressed in PCOS, electroacupuncture reversed the expression of 80 genes, including PPAR gamma and ADIPOR2. Changes in the expression of Nr4 alpha 2 and Junb are reversed by adrenergic blockers in rats demonstrating that changes in gene expression, in part, is due to activation of the sympathetic nervous system. In conclusion, low-frequency electroacupuncture with muscle contractions remodels epigenetic and transcriptional changes that elicit metabolic improvement.
  •  
5.
  • Kokosar, Milana, et al. (författare)
  • Epigenetic and Transcriptional Alterations in Human Adipose Tissue of Polycystic Ovary Syndrome
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic and epigenetic factors may predispose women to polycystic ovary syndrome (PCOS), a common heritable disorder of unclear etiology. Here we investigated differences in genome-wide gene expression and DNA methylation in adipose tissue from 64 women with PCOS and 30 controls. In total, 1720 unique genes were differentially expressed (Q < 0.05). Six out of twenty selected genes with largest expression difference (CYP1B1, GPT), genes linked to PCOS (RAB5B) or type 2 diabetes (PPARG, SVEP1), and methylation (DMAP1) were replicated in a separate case-control study. In total, 63,213 sites (P < 0.05) and 440 sites (Q < 0.15) were differently methylated. Thirty differentially expressed genes had corresponding changes in 33 different DNA methylation sites. Moreover, a total number of 1913 pairs of differentially expressed "gene-CpG" probes were significantly correlated after correction for multiple testing and corresponded with 349 unique genes. In conclusion, we identified a large number of genes and pathways that are affected in adipose tissue from women with PCOS. We also identified specific DNA methylation pathways that may affect mRNA expression. Together, these novel findings show that women with PCOS have multiple transcriptional and epigenetic changes in adipose tissue that are relevant for development of the disease.
  •  
6.
  • Kokosar, Milana, et al. (författare)
  • Erratum: Epigenetic and Transcriptional Alterations in Human Adipose Tissue of Polycystic Ovary Syndrome.
  • 2016
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Scientific Reports 6: Article number: 22883; Published online: 15 March 2016; Updated: 09 May 2016 This Article contains errors. In Table 3, the text in the first row ‘Down-regulated genes’ was incorrectly given as ‘Up-regulated genes’. In addition, Fig. 2E was incorrectly labeled as Fig. 2ES. The correct Fig.
  •  
7.
  • Nilsson, Emma, et al. (författare)
  • Transcriptional and Epigenetic Changes Influencing Skeletal Muscle Metabolism in Women With Polycystic Ovary Syndrome
  • 2018
  • Ingår i: Journal of Clinical Endocrinology & Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 103:12, s. 4465-4477
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Insulin resistance in skeletal muscle is a major risk factor for the development of type 2 diabetes in women with polycystic ovary syndrome (PCOS). Despite this, the mechanisms underlying insulin resistance in PCOS are largely unknown. Objective: To investigate the genome-wide DNA methylation and gene expression patterns in skeletal muscle from women with PCOS and controls and relate them to phenotypic variations. Design/Participants: In a case-control study, skeletal muscle biopsies from women with PCOS (n = 17) and age-, weight-, and body mass index. matched controls (n = 14) were analyzed by array-based DNA methylation and mRNA expression profiling. Results: Eighty-five unique transcripts were differentially expressed in muscle from women with PCOS vs controls, including DYRK1A, SYNPO2, SCP2, and NAMPT. Furthermore, women with PCOS had reduced expression of genes involved in immune system pathways. Two CpG sites showed differential DNA methylation after correction for multiple testing. However, an mRNA expression of similar to 30% of the differentially expressed genes correlated with DNA methylation levels of CpG sites in or near the gene. Functional follow-up studies demonstrated that KLF10 is under transcriptional control of insulin, where insulin promotes glycogen accumulation in myotubes of human muscle cells. Testosterone downregulates the expression levels of COL1A1 and MAP2K6. Conclusion: PCOS is associated with aberrant skeletal muscle gene expression with dysregulated pathways. Furthermore, we identified specific changes in muscle DNA methylation that may affect gene expression. This study showed that women with PCOS have epigenetic and transcriptional changes in skeletal muscle that, in part, can explain the metabolic abnormalities seen in these women.
  •  
8.
  • Stener-Victorin, Elisabet, et al. (författare)
  • Proteomic analysis shows decreased Type I fibers and ectopic fat accumulation in skeletal muscle from women with PCOS
  • 2024
  • Ingår i: eLife. - : eLife Sciences Publications Ltd. - 2050-084X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Polycystic ovary syndrome’s (PCOS) main feature is hyperandrogenism, which is linked to a higher risk of metabolic disorders in women. Gene expression analyses in adipose tissue and skeletal muscle reveal dysregulated metabolic pathways in women with PCOS, but these differences do not necessarily lead tochanges in protein levels and biological function. Methods: To advance our understanding of the molecular alterations in PCOS, we performed global proteomic and phosphorylation site analysis using tandem mass spectrometry. Adipose tissue and skeletal muscle were collected at baseline from 10 women with and without PCOS, and in women with PCOS after 5 weeks of treatment with electrical stimulation. Results: Perilipin-1, a protein that typically coats the surface of lipid droplets in adipocytes, was increased whereas proteins involved in muscle contraction and type I muscle fiber function were downregulated in PCOS muscle. Proteins in the thick and thin filaments had many altered phosphorylation sites, indicating differences in protein activity and function. The upregulated proteins in muscle post treatment were enriched in pathways involved in extracellular matrix organization and wound healing, which may reflect a protective adaptation to repeated contractions and tissue damage due to needling. A similar, albeit less pronounced, upregulation in extracellular matrix organization pathways was also seen in adipose tissue. Conclusions: Our results suggest that hyperandrogenic women with PCOS have higher levels of extramyocellular lipids and fewer oxidative insulin-sensitive type I muscle fibers. These could be key factors leading insulin resistance in PCOS muscle while electric stimulation-induced tissue remodeling may be protective.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (8)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Nilsson, Emma (7)
Ling, Charlotte (7)
Perfilyev, Alexander (4)
Stener-Victorin, Eli ... (4)
Kokosar, Milana (4)
visa fler...
Ohlsson, Claes, 1965 (3)
Stener-Victorin, E (3)
Källman, Thomas, 197 ... (2)
Pillon, Nicolas J. (2)
Behre, Carl Johan, 1 ... (2)
Lindgren, Eva (2)
Sazonova, Antonina (2)
Krook, Anna (2)
Pedersen, M. (1)
Krook, A (1)
Hansson, Ola (1)
Volkov, Petr (1)
Vaag, Allan (1)
Lindgren, E. (1)
Stener-Victorin, Eli ... (1)
Wernstedt Asterholm, ... (1)
Nyström, Jenny, 1972 (1)
Lu, Haojiang (1)
Eriksson, Gustaw (1)
Wu, Yanling, 1985 (1)
Maliqueo, M. (1)
Hojlund, K. (1)
Maliqueo, Manuel (1)
Boi, Roberto (1)
Lanner, Johanna T (1)
Jude, Baptiste (1)
Shrestha, Man Mohan (1)
Pircs, Karolina (1)
Hjort, Line (1)
Davegårdh, Cajsa (1)
Säll, Johanna (1)
Broholm, C. (1)
Henriksen, T. I. (1)
Brons, C. (1)
Wurthner, J. U. (1)
Pfeffer, K. (1)
Scheele, C. (1)
Nilsson, Emma A (1)
Fornes, Romina (1)
Fornes, R. (1)
Ling, Charlotte, 196 ... (1)
Martis-Thiele, Mihae ... (1)
Samad, Manisha, 1995 (1)
Rodriguez Paris, Val ... (1)
visa färre...
Lärosäte
Göteborgs universitet (7)
Lunds universitet (6)
Karolinska Institutet (6)
Högskolan i Skövde (5)
Uppsala universitet (2)
Linköpings universitet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy