SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Little A.) ;lar1:(kth)"

Sökning: WFRF:(Little A.) > Kungliga Tekniska Högskolan

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Douchkov, D., et al. (författare)
  • The barley (Hordeum vulgare) cellulose synthase-like D2 gene (HvCslD2) mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus
  • 2016
  • Ingår i: New Phytologist. - : Blackwell Publishing. - 0028-646X .- 1469-8137. ; 212:2, s. 421-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell walls and cellular turgor pressure shape and suspend the bodies of all vascular plants. In response to attack by fungal and oomycete pathogens, which usually breach their host's cell walls by mechanical force or by secreting lytic enzymes, plants often form local cell wall appositions (papillae) as an important first line of defence. The involvement of cell wall biosynthetic enzymes in the formation of these papillae is still poorly understood, especially in cereal crops. To investigate the role in plant defence of a candidate gene from barley (Hordeum vulgare) encoding cellulose synthase-like D2 (HvCslD2), we generated transgenic barley plants in which HvCslD2 was silenced through RNA interference (RNAi). The transgenic plants showed no growth defects but their papillae were more successfully penetrated by host-adapted, virulent as well as avirulent nonhost isolates of the powdery mildew fungus Blumeria graminis. Papilla penetration was associated with lower contents of cellulose in epidermal cell walls and increased digestion by fungal cell wall degrading enzymes. The results suggest that HvCslD2-mediated cell wall changes in the epidermal layer represent an important defence reaction both for nonhost and for quantitative host resistance against nonadapted wheat and host-adapted barley powdery mildew pathogens, respectively.
  •  
2.
  • Abi-Rached, Laurent, et al. (författare)
  • The Shaping of Modern Human Immune Systems by Multiregional Admixture with Archaic Humans
  • 2011
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 334:6052, s. 89-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole genome comparisons identified introgression from archaic to modern humans. Our analysis of highly polymorphic human leukocyte antigen (HLA) class I, vital immune system components subject to strong balancing selection, shows how modern humans acquired the HLA-B*73 allele in west Asia through admixture with archaic humans called Denisovans, a likely sister group to the Neandertals. Virtual genotyping of Denisovan and Neandertal genomes identified archaic HLA haplotypes carrying functionally distinctive alleles that have introgressed into modern Eurasian and Oceanian populations. These alleles, of which several encode unique or strong ligands for natural killer cell receptors, now represent more than half the HLA alleles of modern Eurasians and also appear to have been later introduced into Africans. Thus, adaptive introgression of archaic alleles has significantly shaped modern human immune systems.
  •  
3.
  • Dimitroff, George, et al. (författare)
  • (1,3;1,4)-beta-Glucan Biosynthesis by the CSLF6 Enzyme : Position and Flexibility of Catalytic Residues Influence Product Fine Structure
  • 2016
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 55:13, s. 2054-2061
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose synthase-like F6 (CslF6) genes encode polysaccharide synthases responsible for (1,3;1,4)-beta-glucan biosynthesis in cereal grains. However, it is not clear how both (1,3)- and (1,4) -linkages are incorporated into a single polysaccharide chain and how the frequency and arrangement of the two linkage types that define the fine structure of the polysaccharide are controlled. Through transient expression in Nicotiana benthamiana leaves, two CSLF6 orthologs from different cereal species were shown to mediate the synthesis of (1,3;1,4)-beta-glucans with very different fine structures. Chimeric cDNA constructs with interchanged sections of the barley and sorghum CslF6 genes were developed to identify regions of the synthase enzyme responsible for these differences. A single amino acid residue upstream of the TED motif in the catalytic region was shown to dramatically change the fine structure of the polysaccharide produced. The structural basis of this effect can be rationalized by reference to a homology model of the enzyme and appears to be related to the position and flexibility of the TED motif in the active site of the enzyme. The region and amino acid residue identified provide opportunities to manipulate the solubility of (1,3;1,4)-beta-glucan in grains and vegetative tissues of the grasses and, in particular, to enhance the solubility of dietary fibers that are beneficial to human health.
  •  
4.
  • Pham, Trang A.T., et al. (författare)
  • Analysis of cell wall synthesis and metabolism during early germination of Blumeria graminis f. sp. hordei conidial cells induced in vitro
  • 2019
  • Ingår i: The Cell Surface. - : Elsevier BV. - 2468-2330. ; 5, s. 100030-
  • Tidskriftsartikel (refereegranskat)abstract
    • As an obligate biotroph, Blumeria graminis f. sp. hordei (Bgh) cannot be grown in an axenic culture, and instead must be cultivated on its host species, Hordeum vulgare (barley). In this study an in vitro system utilizing n-hexacosanal, a constituent of the barley cuticle and known inducer of Bgh germination, was used to cultivate Bgh and differentiate conidia up to the appressorial germ tube stage for analysis. Transcriptomic and proteomic profiling of the appressorial germ tube stage revealed that there was a significant shift towards energy and protein production during the pre-penetrative phase of development, with an up-regulation of enzymes associated with cellular respiration and protein synthesis, modification and transport. Glycosidic linkage analysis of the cell wall polysaccharides demonstrated that during appressorial development an increase in 1,3- and 1,4-linked glucosyl residues and xylosyl residues was detected along with a significant decrease in galactosyl residues. The use of this in vitro cultivation method demonstrates that it is possible to analyse the pre-penetrative processes of Bgh development in the absence of a plant host.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy