SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Liu Edison T.) "

Sökning: WFRF:(Liu Edison T.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hudson, Thomas J., et al. (författare)
  • International network of cancer genome projects
  • 2010
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 464:7291, s. 993-998
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.</p>
  •  
2.
  • Smedby, Karin E., et al. (författare)
  • GWAS of Follicular Lymphoma Reveals Allelic Heterogeneity at 6p21.32 and Suggests Shared Genetic Susceptibility with Diffuse Large B-cell Lymphoma
  • 2011
  • Ingår i: PLoS Genetics. - 1553-7390. ; 7:4, s. e1001378
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Non-Hodgkin lymphoma (NHL) represents a diverse group of hematological malignancies, of which follicular lymphoma (FL) is a prevalent subtype. A previous genome-wide association study has established a marker, rs10484561 in the human leukocyte antigen (HLA) class II region on 6p21.32 associated with increased FL risk. Here, in a three-stage genome-wide association study, starting with a genome-wide scan of 379 FL cases and 791 controls followed by validation in 1,049 cases and 5,790 controls, we identified a second independent FL-associated locus on 6p21.32, rs2647012 (ORcombined = 0.64, P-combined= 2x10(-21)) located 962 bp away from rs10484561 (r(2)&lt; 0.1 in controls). After mutual adjustment, the associations at the two SNPs remained genome-wide significant (rs2647012: ORadjusted = 0.70, P-adjusted= 4x10(-12); rs10484561: ORadjusted = 1.64, P-adjusted= 5x10(-15)). Haplotype and coalescence analyses indicated that rs2647012 arose on an evolutionarily distinct haplotype from that of rs10484561 and tags a novel allele with an opposite (protective) effect on FL risk. Moreover, in a follow-up analysis of the top 6 FL-associated SNPs in 4,449 cases of other NHL subtypes, rs10484561 was associated with risk of diffuse large B-cell lymphoma (ORcombined = 1.36, P-combined = 1.4x10(-7)). Our results reveal the presence of allelic heterogeneity within the HLA class II region influencing FL susceptibility and indicate a possible shared genetic etiology with diffuse large B-cell lymphoma. These findings suggest that the HLA class II region plays a complex yet important role in NHL.</p>
  •  
3.
  • Low, Yen Ling, et al. (författare)
  • Multi-Variant Pathway Association Analysis Reveals the Importance of Genetic Determinants of Estrogen Metabolism in Breast and Endometrial Cancer Susceptibility
  • 2010
  • Ingår i: PLoS genetics. - 1553-7390. ; 6:7, s. e1001012
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Despite the central role of estrogen exposure in breast and endometrial cancer development and numerous studies of genes in the estrogen metabolic pathway, polymorphisms within the pathway have not been consistently associated with these cancers. We posit that this is due to the complexity of multiple weak genetic effects within the metabolic pathway that can only be effectively detected through multi-variant analysis. We conducted a comprehensive association analysis of the estrogen metabolic pathway by interrogating 239 tagSNPs within 35 genes of the pathway in three tumor samples. The discovery sample consisted of 1,596 breast cancer cases, 719 endometrial cancer cases, and 1,730 controls from Sweden; and the validation sample included 2,245 breast cancer cases and 1,287 controls from Finland. We performed admixture maximum likelihood (AML)-based global tests to evaluate the cumulative effect from multiple SNPs within the whole metabolic pathway and three sub-pathways for androgen synthesis, androgen-to-estrogen conversion, and estrogen removal. In the discovery sample, although no single polymorphism was significant after correction for multiple testing, the pathway-based AML global test suggested association with both breast (rho(global) = 0.034) and endometrial (rho(global) = 0.052) cancers. Further testing revealed the association to be focused on polymorphisms within the androgen-to-estrogen conversion sub-pathway, for both breast (rho(global) = 0.008) and endometrial cancer (rho(global) = 0.014). The sub-pathway association was validated in the Finnish sample of breast cancer (rho(global) = 0.015). Further tumor subtype analysis demonstrated that the association of the androgen-to-estrogen conversion sub-pathway was confined to postmenopausal women with sporadic estrogen receptor positive tumors (rho(global) = 0.0003). Gene-based AML analysis suggested CYP19A1 and UGT2B4 to be the major players within the sub-pathway. Our study indicates that the composite genetic determinants related to the androgen-estrogen conversion are important for the induction of two hormone-associated cancers, particularly for the hormone-driven breast tumour subtypes.</p>
  •  
4.
  • Hall, Per, et al. (författare)
  • Hormone-replacement therapy influences gene expression profiles and is associated with breast-cancer prognosis : a cohort study
  • 2006
  • Ingår i: BMC Medicine. - 1741-7015 .- 1741-7015. ; 4, s. 16
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Background: Postmenopausal hormone-replacement therapy (HRT) increases breast-cancer risk. The influence of HRT on the biology of the primary tumor, however, is not well understood.</p> <p>Methods: We obtained breast-cancer gene expression profiles using Affymetrix human genome U133A arrays. We examined the relationship between HRT-regulated gene profiles, tumor characteristics, and recurrence-free survival in 72 postmenopausal women.</p> <p>Results: HRT use in patients with estrogen receptor ( ER) protein positive tumors (n = 72) was associated with an altered regulation of 276 genes. Expression profiles based on these genes clustered ER-positive tumors into two molecular subclasses, one of which was associated with HRT use and had significantly better recurrence free survival despite lower ER levels. A comparison with external data suggested that gene regulation in tumors associated with HRT was negatively correlated with gene regulation induced by short-term estrogen exposure, but positively correlated with the effect of tamoxifen.</p> <p>Conclusion: Our findings suggest that post-menopausal HRT use is associated with a distinct gene expression profile related to better recurrence-free survival and lower ER protein levels. Tentatively, HRT-associated gene expression in tumors resembles the effect of tamoxifen exposure on MCF-7 cells.</p>
  •  
5.
  • Ivshina, Anna V., et al. (författare)
  • Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer
  • 2006
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 66:21, s. 10292-10301
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Histologic grading of breast cancer defines morphologic subtypes informative of metastatic potential, although not without considerable interobserver disagreement and clinical heterogeneity particularly among the moderately differentiated grade 2 (G2) tumors. We posited that a gene expression signature capable of discerning tumors of grade 1 (G1) and grade 3 (W) histology might provide a more objective measure of grade with prognostic benefit for patients with G2 disease. To this end, we studied the expression profiles of 347 primary invasive breast tumors analyzed on Affymetrix microarrays. Using class prediction algorithms, we identified 264 robust grade-associated markers, six of which could accurately classify G1 and G3 tumors, and separate G2 tumors into two highly discriminant classes (termed G2a and G2b genetic grades) with patient survival outcomes highly similar to those with G1 and G3 histology, respectively. Statistical analysis of conventional clinical variables further distinguished G2a and G2b subtypes from each other, but also from histologic G1 and G3 tumors. In multivariate analyses, genetic grade was consistently found to be an independent prognostic indicator of disease recurrence comparable with that of lymph node status and tumor size. When incorporated into the Nottingham prognostic index, genetic grade enhanced detection of patients with less harmful tumors, likely to benefit little from adjuvant therapy. Our findings show that a genetic grade signature can improve prognosis and therapeutic planning for breast cancer patients, and support the view that low- and high-grade disease, as defined genetically, reflect independent pathobiological entities rather than a continuum of cancer progression.</p>
  •  
6.
  • Jazaeri, Amir A, et al. (författare)
  • BRCA1-mediated repression of select X chromosome genes
  • 2004
  • Ingår i: Journal of Translational Medicine. - BioMed Central (BMC). - 1479-5876. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently BRCA1 has been implicated in the regulation of gene expression from the X chromosome. In this study the influence of BRCA1 on expression of X chromosome genes was investigated. Complementary DNA microarrays were used to compare the expression levels of X chromosome genes in 18 BRCA1-associated ovarian cancers to those of the 13 "BRCA1-like" and 14 "BRCA2-like" sporadic tumors (as defined by previously reported expression profiling). Significance was determined using parametric statistics with P < 0.005 as a cutoff. Forty of 178 total X-chromosome transcripts were differentially expressed between the BRCA1-associated tumors and sporadic cancers with a BRCA2-like molecular profile. Thirty of these 40 genes showed higher mean expression in the BRCA1-associated samples including all 11 transcripts that mapped to Xp11. In contrast, four of 178 total X chromosome transcripts showed significant differential expression between BRCA1-associated and sporadic tumors with a BRCA1-like molecular profile. All four mapped to Xp11 and showed higher mean expression in BRCA1-associated tumors. Re-expression of BRCA1 in HCC1937 BRCA1-deficient breast cancer cell resulted in the repression of 21 transcripts. Eleven of the 21 (54.5%) transcripts mapped to Xp11. However, there was no significant overlap between these Xp11 genes and those found to be differentially expressed between BRCA1-associated and sporadic ovarian cancer samples. These results demonstrate that BRCA1 mediates the repression of several X chromosome genes, many of which map to the Xp11 locus.
7.
  • Pawitan, Yudi, et al. (författare)
  • Gene expression profiling spares early breast cancer patients from adjuvant therapy : derived and validated in two population-based cohorts
  • 2005
  • Ingår i: Breast cancer research : BCR. - 1465-5411. ; 7:6, s. R953-64
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>INTRODUCTION: Adjuvant breast cancer therapy significantly improves survival, but overtreatment and undertreatment are major problems. Breast cancer expression profiling has so far mainly been used to identify women with a poor prognosis as candidates for adjuvant therapy but without demonstrated value for therapy prediction. METHODS: We obtained the gene expression profiles of 159 population-derived breast cancer patients, and used hierarchical clustering to identify the signature associated with prognosis and impact of adjuvant therapies, defined as distant metastasis or death within 5 years. Independent datasets of 76 treated population-derived Swedish patients, 135 untreated population-derived Swedish patients and 78 Dutch patients were used for validation. The inclusion and exclusion criteria for the studies of population-derived Swedish patients were defined. RESULTS: Among the 159 patients, a subset of 64 genes was found to give an optimal separation of patients with good and poor outcomes. Hierarchical clustering revealed three subgroups: patients who did well with therapy, patients who did well without therapy, and patients that failed to benefit from given therapy. The expression profile gave significantly better prognostication (odds ratio, 4.19; P = 0.007) (breast cancer end-points odds ratio, 10.64) compared with the Elston-Ellis histological grading (odds ratio of grade 2 vs 1 and grade 3 vs 1, 2.81 and 3.32 respectively; P = 0.24 and 0.16), tumor stage (odds ratio of stage 2 vs 1 and stage 3 vs 1, 1.11 and 1.28; P = 0.83 and 0.68) and age (odds ratio, 0.11; P = 0.55). The risk groups were consistent and validated in the independent Swedish and Dutch data sets used with 211 and 78 patients, respectively. CONCLUSION: We have identified discriminatory gene expression signatures working both on untreated and systematically treated primary breast cancer patients with the potential to spare them from adjuvant therapy.</p>
  •  
8.
  • Welsh, Michael, et al. (författare)
  • The tyrosine kinase FRK/RAK participates in cytokine-induced islet cell cytotoxicity
  • 2004
  • Ingår i: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 382, s. 261-268
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Hallmarks of the inflammatory process in Type I diabetes are macrophage activation, local release of b-cell-toxic cytokines and infiltration of cytotoxic T lymphocytes. We have observed recently that mice overexpressing active FRK (fyn-related kinase)/RAK (previously named GTK/Bsk/IYK, where GTK stands for gut tyrosine kinase, Bsk for b-cell Src-homology kinase and IYK for intestinal tyrosine kinase) in b-cells exhibit increased susceptibility to b-cell-toxic events, and therefore, we now attempt to find a more precise role for FRK/RAK in these processes. Phosphopeptide mapping of baculovirus-produced mouse FRK/RAK revealed an autophosphorylation pattern compatible with Tyr-394 being the main site. No evidence for <em>in vitro</em> phosphorylation of the C-terminal regulatory sites Tyr-497 and Tyr-504 was obtained, nor was there any indication of <em>in vitro</em> regulation of FRK/RAK kinase activity. Screening a panel of known tyrosine kinase inhibitors for their ability to inhibit FRK/RAK revealed several compounds that inhibited FRK/RAK, with a potency similar to that reported for their ability to inhibit other tyrosine kinases. Cytokine-induced islet toxicity was reduced in islets isolated from FRK/RAK knockout mice and this occurred without effects on the production of nitric oxide. Addition of the nitric oxide inhibitor nitroarginine to FRK/RAK knockout islets exposed to cytokines decreased cell death to a basal level. In normal islets, cytokine-induced cell death was inhibited by the addition of two FRK/RAK inhibitors, SU4984 and D-65495, or by transfection with short interfering RNA against FRK/RAK. It is concluded that FRK/RAK contributes to cytokine-induced b-cell death, and inhibition of this kinase could provide means to suppress b-cell destruction in Type I diabetes.</p>
  •  
9.
  • Zamora, Juan Carlos, et al. (författare)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • Ingår i: IMA Fungus. - International Mycological Association. - 2210-6340. ; 9:1, s. 167-175
  • Tidskriftsartikel (refereegranskat)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physicals objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under theterms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
10.
  • Zamora, Juan Carlos, et al. (författare)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • Ingår i: IMA Fungus. - INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Tidskriftsartikel (refereegranskat)abstract
    • <p>Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.</p>
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy